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ABSTRACT: Mathematical models can aid the design of genetic
circuits, but may yield inaccurate results if individual parts are not
modeled at the appropriate resolution. To illustrate the importance
of this concept, we study transcriptional cascades consisting of two
inducible synthetic transcription factors connected in series.
Despite the simplicity of this design, we find that accurate
prediction of circuit behavior requires mapping the dose responses
of each circuit component along the dimensions of both its
expression level and its inducer concentration. Using this
multidimensional characterization, we were able to computation-
ally explore the behavior of 16 different circuit designs. We
experimentally verified a subset of these predictions and found
substantial agreement. This method of biological part characterization enables the use of models to identify (un)desired circuit
behaviors prior to experimental implementation, thus shortening the design−build−test cycle for more complex circuits.

KEYWORDS: context, part characterization, genetic circuits, synthetic biology

Synthetic biology utilizes biological parts such as tran-
scription factors to build circuits that perform useful signal

processing functions.1,2 Advancements in DNA synthesis
technology have rapidly grown the library of biological parts,
but the construction of predictably performing circuits has
lagged behind.3 This lag is due in large part to two factors.
First, it is now faster to build new DNA constructs than it is to
characterize them experimentally, leading to the creation of
many poorly characterized biological parts.4 Second, simple
phenomenological models of individual parts often fail to
predict the behavior of circuits composed of these parts, even
in the absence of contextual effects5 or retroactivity.6 Building
more useful mathematical models of biological parts would
greatly facilitate the forward design of genetic circuits with
predictable behavior.7−12

A common feature of genetic circuits is the use of inducible
synthetic transcription factors (iSynTFs)13−15 as facile input
nodes that can activate downstream elements in a dose-
responsive manner. In Saccharomyces cerevisiae, a common
architecture for iSynTFs consists of a fusion of a DNA binding
domain (DBD), human hormone receptor (HR), and
activating domain (AD).13,16−18 Absent their corresponding
hormones, these iSynTFs are sequestered in the cytosol via
interaction of the HR with Hsp90.19,20 This interaction inhibits
nuclear localization until hormone is added, enabling dose-
responsive control of transcription from a cognate promoter.
iSynTFs are an indispensable part of the synthetic biology
toolbox. Circuits containing iSynTFs have been used to probe
the behavior of synthetic degradation-based feedback,21,22

investigate noise in transcription,13 and study the topology of
endogenous circuits.17,23,24

iSynTFs are commonly characterized via their hormone dose
response for one expression level of the transcription factor,
but this represents only one dimension of their functionality.
Genetic circuits often perform computation by modulating the
expression level of transcription factors in a network. Thus,
accurate prediction of circuit behavior should be contingent on
understanding the behavior of these inducible transcription
factors as they change expression level within a circuit.
In this work, we sought to predict the behavior of a simple

genetic circuit: a transcriptional cascade consisting of two
iSynTFs in which the first iSynTF activates expression of a
second iSynTF. We initially used a simple Hill model to fit the
behavior of each iSynTF.25,26 Although this model reproduced
the hormone dose response of an iSynTF at a single expression
level, it failed at different iSynTF expression levels. We found
that two modifications were essential to overcome this
challenge. First, we developed an expanded Hill model to
account for changes in the basal activity and output saturation
as a function of iSynTF expression level. Second, in addition to
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dependence on hormone concentration, we fit our model to
experimental data collected from different expression levels of
each iSynTF. Neither of these modifications alone were able to
predict the relationship between hormone concentration and
expression level for all three iSynTFs at all expression levels.
Using our expanded Hill model fit to multidimensional
experimental data (hormone dose response at multiple
expression levels) we were able to computationally explore
the full design space of two-step transcriptional cascades,
totalling 16 possible circuits. We experimentally cross-validated
these simulations for a subset of circuits, confirming the
predictive power of the model. These results serve as an
example of the type of multidimensional biological part
characterization that is required to predict circuit behavior as
a composition of component parts.

■ RESULTS AND DISCUSSION

To predict the behavior of iSynTFs in genetic circuits, we
attempted to fit a simple Hill model to the hormone dose
response of each iSynTF in isolation. We first studied GEM, a
previously described iSynTF that consists of the Gal4 DBD,
estrogen HR, and Msn2 AD, which activates transcription from
the pGAL1 promoter in response to estradiol (E2).13 We
constitutively expressed GEM from pRNR2, a medium

strength constitutive promoter previously characterized in the
yeast toolkit (YTK),27 and measured its dose response: the
fluorescence output of pGAL1:yellow fluorescent protein
(YFP) as a function of E2. A simple Hill model accurately
reproduced the basal activity, output saturation, and curvature
of this pRNR2:GEM dose response (Figure 1A; see Methods).
The output of GEM is dependent on its hormone input, but

this hormone dose response relationship may be modulated in
nontrivial ways by the expression level of GEM itself. This
effect could become significant if GEM is used in a circuit in
which its expression level changes. We therefore next sought to
understand the relationship between GEM expression level and
its hormone dose response. Using the simple Hill model fit to
the pRNR2:GEM data, we simulated the dose response of
GEM at multiple expression levels around pRNR2 (Figure 1B).
Changing the GEM expression level (represented by X in the
simple Hill model) simply changed the half-max point of the
sigmoidal hormone dose response curve, while maintaining the
same basal activity, output saturation, and curvature.
We experimentally tested this prediction by measuring the

dose response of GEM at several different expression levels
using promoters of different strengths picked from the YTK
part library.27 We selected two promoters, pREV1 and pTEF1,
that have lower and higher expression levels than pRNR2, and

Figure 1. Simple Hill model fit to a single hormone dose response fails to capture the full behavior of iSynTF. (A) Left, A constitutively expressed
(pC, constitutive promoter) inducible synthetic transcription factor (iSynTF; here GEM) is bound by its hormone inducer (here estradiol, E2) and
activates transcription of a downstream YFP reporter. Right, Inducer dose response of GEM at a single expression level (pRNR2, constitutive
promoter) as a function of hormone, here estradiol (E2). A simple Hill model (see inset: μY, maximum synthesis rate; α, basal activity level; X,
iSynTF concentration; H, hormone concentration; K, activation coefficient; n, Hill coefficient) was fit to the observed data (mean squared error,
MSE = 0.00015). (B) Left: Expression level of GEM can change in response to inputs in a genetic circuit. Right: Simple Hill model prediction of
inducer dose response for different expression levels of GEM (see legend for fold-change values). (C) Measurement of constitutive promoter
expression levels using a pC:YFP fusion (where pC represents pREV1, pRNR2, or pTEF1). (D) Comparison of model predictions and
experimental data for GEM inducer dose response at three different expression levels of GEM (mean squared prediction error, MSPE = 0.0096).
Insets in red and orange boxes highlight the differences in basal activity and output saturation. Solid lines represent model predictions, open circles
and filled squares represent experimental mean, and error bars represent s.d. of three biological replicates. See Supplementary Table S4 for used
parameter values.
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confirmed their relative expression levels using a promoter
fusion to YFP (Figure 1C). We then used these promoters to
drive expression of GEM and experimentally measured each
hormone dose response. Contrary to the prediction of the
simple Hill model, changing the expression level of GEM did
not just shift the hormone dose response half-max point
(Figure 1D). We also observed a direct effect of GEM
expression level on the basal activity (Figure 1D, red
highlight), the output saturation (Figure 1D, orange highlight),
and the curvature of each hormone dose response. These
results demonstrate that iSynTFs are dose responsive in two
dimensions: hormone concentration and iSynTF expression
level. This prompted us to re-examine the choice of model and
data used to fit the model.
We hypothesized that the Hill model predictions failed in

part because this simple model did not have sufficient
resolution to describe the nonlinear effect of expression level
on iSynTF behavior. Furthermore, we hypothesized that we
used insufficient data to fit the original model. To address the
former, we introduced two new parameters to our model: one
to account for the affinity between the hormone and iSynTF,
and a second to account for the basal activity of the iSynTF in
the absence of hormone28 (Figure 2A; see Methods). We refer
to this augmented model as the expanded Hill model. To
address the latter, we fit this expanded Hill model with the

hormone dose responses of GEM at three different expression
levels: pREV1:GEM, pRNR2:GEM, and pTEF1:GEM. This
new model was able to recapitulate all three of the
experimental hormone dose responses (Figure 2A), and
predicted a clear relationship between GEM expression level
and the basal activity, output saturation, and curvature (Figure
2B).
To test the accuracy of the expanded Hill model, we selected

a constitutive promoter of intermediate expression level from
the Yeast Toolkit (YTK) part library, pRPL18B, to drive
expression of GEM. We measured the pRPL18B expression
level relative to pREV1, pRNR2, and pTEF1 via a YFP
promoter fusion (Figure 2C) and input this information into
the expanded Hill model to predict the dose response of
pRPL18B:GEM. Gratifyingly, we found that the model
accurately reproduced the basal activity, output saturation,
and curvature of the experimental pRPL18B:GEM hormone
dose response on which it was not trained (Figure 2D).
To generalize these results beyond GEM, we examined two

other iSynTFs: Z3PM (a fusion of the Zif268 DBD,
progesterone HR, and Msn2 AD) and Z4EM (a fusion of
the Z4 synthetic zinc finger DBD, estrogen HR, and Msn2
AD).17 Z3PM activates transcription from pZ3 in a dose
responsive fashion to progesterone (Pg, Figure S1A), and
Z4EM activates transcription from pZ4 in a dose responsive

Figure 2. Expanded Hill model fit to hormone dose responses at multiple iSynTF expression levels enables accurate prediction of part behavior.
(A) Left, Schematic of an expanded Hill model where the iSynTF activation step is explicitly considered (XH and X⌀, active and inactive iSynTF
concentration; H, total hormone concentration; KX, hormone dissociation constant; μY, maximum synthesis rate; α and β, basal activity level of the
free promoter and the inactive iSynTF; K, activation coefficient; n, Hill coefficient; see Methods for details). Right, Inducer (estradiol, E2) dose
response of GEM at three expression levels (pREV1, pRNR2, and pTEF1 constitutive promoters). The expanded Hill model (described in the left)
was fit to the observed data (mean squared error, MSE = 0.0021). Insets in red and orange boxes highlight the recapitulation of the basal activity
and output saturation (compare to Figure 1D). (B) Expanded Hill model prediction of inducer dose responses for different expression levels of
GEM (see legend for fold-change values). (C) Measurement of constitutive promoter expression levels using a pC:YFP fusion including pRPL18B
(where pC represents one of pREV1, pRNR2, pRPL18B, or pTEF1). (D) Comparison of model prediction and experimental data for
pRPL18B:GEM inducer dose response as cross-validation. Solid lines represent model predictions, open circles and filled squares represent
experimental mean, and error bars represent s.d. of three biological replicates. See Supplementary Figure S1 for the equivalent analysis using the
Z3PM and Z4EM iSynTFs. See Supplementary Table S4 for used parameter values.
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fashion to estradiol (E2, Figure S1B). To characterize these
iSynTFs, we repeated the workflow developed for GEM: we

expressed Z3PM and Z4EM from pREV1, pRNR2, and
pTEF1, experimentally measured each hormone dose

Figure 3. Using refined models to explore circuit designs. (A,C,E) A constitutively expressed (pC, constitutive promoter) iSynTF ((A) GEM, (C)
Z4EM, and (E) Z3PM) is bound by its hormone inducer ((A,C) estradiol, E2, and (E) progesterone, Pg) and activates transcription of a second
downstream iSynTF ((A,C) Z3PM, and (E) GEM), which in turn binds its hormone inducer ((A,C) progesterone, Pg, and (D) estradiol, E2) and
activates transcription of the downstream YFP reporter. (B,D,F) Comparison of the expanded Hill model predictions (top panels) and
experimental data (bottom panels) for the circuits described in (B) panel A, (D) panel C, and (F) panel E. (B) YFP expression as a function of
progesterone (x-axis, Pg) at four different expression levels of the GEM (see plot titles); the progesterone dose responses were simulated or
measured at eight different estradiol concentrations (E2, see legend in the top). (D) YFP expression as a function of progesterone (x-axis, Pg) at
one expression level of the Z4EM (pRNR2:Z4EM), and eight different estradiol concentrations (E2, see legend in the bottom). (F) YFP expression
as a function of estradiol (x-axis, E2) at one expression level of the Z3PM (pRNR2:Z3PM), and eight different progesterone concentrations (Pg,
see legend in the bottom). The mean squared prediction error (MSPE) is shown for each case as an inset box. Solid lines represent model
predictions, open circles and dotted lines represent experimental mean, and error bars represent s.d. of three biological replicates. See
Supplementary Figure S3 for simulations of all circuit designs. See Supplementary Table S4 for used parameter values.
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response, and used these data to fit specific parameters for each
iSynTF to the same expanded Hill model as above. Using the
fit models, we next simulated the effect of iSynTF
concentration on the hormone dose response. Simulations of
Z3PM and Z4EM displayed similar trends to GEM, but they
showed a much greater effect of iSynTF expression level on the
basal activity and output saturation. Lastly, we cross-validated
the accuracy of the Z3PM and Z4EM models against the
pRPL18B expression level dose response (Figure S1C−E).
The Z4EM model accurately captured the basal activity, output
saturation, and shape of the pRPL18B dose response curve.
The Z3PM model reproduced the output saturation, but it
underestimated the basal activity and overestimated the
sharpness of the curve.
When comparing the model fittings for each iSynTF, we

found that multiple parameter sets fit the observed data equally
well, producing similar dose response profiles (Figure S2). For
the quantile 10 (i.e., lower 10%) of 1000 fitting chains (see
Methods), the best fitting parameter sets for each iSynTF
showed that most kinetic parameter values were very well
constrained (e.g., basal activity α), while some appeared
underdetermined (e.g., hormone:iSynTF affinity constant, KX,
for GEM). It may be possible to further resolve differences
between the simulations and experiments with a more detailed
description of the hormone regulation. Depending on the
specific application in mind, the amount and type of inaccuracy
that can be tolerated from a model and its prediction varies.
Here, we were most interested in fitting the qualitative trends
of the hormone dose responses as a function of iSynTF
expression level, and thus proceeded to use these fittings to
predict genetic circuit behavior.
Using expanded Hill models of GEM, Z3PM, and Z4EM fit

to multidimensional data, we explored all possible variants of a
two-step transcriptional cascade: a circuit configuration where
the constitutively expressed first iSynTF induces expression of
a second iSynTF, which in turn induces expression of a YFP
reporter (Figure 3A; see Methods). With two orthogonal HRs,
there are four possible configurations of the three iSynTFs
(GEM → Z3PM, Z4EM → Z3PM, Z3PM → GEM, Z3PM →
Z4EM). Taking into account four possible expression levels for
the first iSynTF (pREV1, pRNR2, pRPL18B, pTEF1), in total
there are 16 possible circuit variants. Because GEM, Z3PM,
and Z4EM each have a unique response to hormone and
changing expression level, we expected that each circuit variant
would behave differently in response to the two hormone
inducers. In agreement, the simulations displayed different
responses to both inducers, basal activities, and output
saturations (Figure S3). These multidimensional fit models
enable efficient screening of these circuit variants, guiding the
selection of designs to be tested experimentally.
We sought to verify the accuracy of the model simulations

by experimentally measuring the hormone dose responses of a
subset of circuit variants. First, we studied the effect of
changing the first iSynTF expression level for a single
configuration by measuring the output of GEM → Z3PM at
all four expression levels of GEM (Figure 3B). We found that
the model accurately predicted several key aspects of the
circuit behavior such as the changing output saturation and
curvature. However, the simulations underestimated the effect
of E2 on the basal activity in the absence of Pg.
We next investigated whether both the expanded Hill model

and multidimensional data are required to predict the behavior
of the pC:GEM → Z3PM circuit. First, we assessed whether

the simple Hill model fit to either a single promoter dose
response data or multidimensional data could predict pC:GEM
→ Z3PM circuit behavior (Figure S4). When we fit the simple
Hill model to a single promoter dose response, the circuit
behavior predictions varied significantly based on the promoter
used for fitting (Figure S4A−C). As expected, most of these
predictions failed to capture the cascade circuit behavior. We
attempted to improve the predictions of the simple Hill model
by fitting using multidimensional data (Figure S4D), but found
that the simple Hill model is incapable of accounting for the
basal activity and output saturation observed in our
experimental data. Therefore, fitting individual parts using
multidimensional data is not sufficient to predict circuit
behavior if the model lacks the complexity to match the
observed data.
We also observed that the expanded Hill model fit to a single

promoter pRNR2:iSynTF dose response (Figure S5A) failed to
properly predict the response of the pC:GEM → Z3PM
circuit. Using a pair of weak promoters, pREV1:iSynTF and
pRNR2:iSynTF (Figure S5B), to fit the dose response data for
the iSynTF did not improve the prediction accuracy of the
circuit, likely because this set of data does not fully constrain
the behavior of either iSynTF. When we picked a different pair
of promoters, pREV1:iSynTF and pTEF1:iSynTF (Figure
S5C), which capture the low and high end of possible iSynTF
expression level, the accuracy of the model prediction was very
similar to the expanded Hill model fit to either three (Figure
3B) or four promoters (Figure S5D). This result shows that
multidimensional data used for fitting must be carefully
selected to capture the full range of responses for the parts
described. Taken together, this comparison highlights that
both the multidimensional characterization of the iSynTFs and
the expanded Hill model are necessary to predict circuit
behavior.
We used mean squared prediction error (MSPE, see

Methods for definition) as a metric to compare the
performance of our various models and fitting strategies. The
MSPE values for the expanded Hill model fit to pREV1 and
pTEF1 versus the same model fit to three or four promoters
were very similar, validating our qualitative observations.
However, these MSPE values were very similar to the MSPE
values for the simple Hill model fit to pRNR2 data, despite the
inability of the simple Hill model to capture the basal activity,
output saturation, and shape of the dose response curves. This
suggests that using metrics such as MSPE alone to compare
models or fitting strategies may not provide a fair assessment
under all contexts.
Next, we compared three circuit configurations (GEM →

Z3PM, Figure 3B, Z4EM → Z3PM, Figure 3D, Z3PM →
GEM, Figure 3F) at the pRNR2 expression level of the first
iSynTF. As predicted by the model simulations, the Z3PM →
GEM configuration displayed the greatest responsiveness to
the second TF inducer in the absence of the first TF inducer.
The simulations were also able to qualitatively predict the
curvature of the second TF inducer dose response curves, as
well as the effect of the first TF inducer on output saturation.
As before, the simulations underestimated the effect of the first
TF inducer on circuit output in the absence of the second TF
inducer.
This slight quantitative discrepancy might be explained by a

shortcoming in the model’s ability to predict the expression
level of the second TF as a function of the first TF inducer.
The model assumes that expression of the second TF will be

ACS Synthetic Biology pubs.acs.org/synthbio Letter

https://dx.doi.org/10.1021/acssynbio.0c00288
ACS Synth. Biol. XXXX, XXX, XXX−XXX

E

http://pubs.acs.org/doi/suppl/10.1021/acssynbio.0c00288/suppl_file/sb0c00288_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acssynbio.0c00288/suppl_file/sb0c00288_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acssynbio.0c00288/suppl_file/sb0c00288_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acssynbio.0c00288/suppl_file/sb0c00288_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acssynbio.0c00288/suppl_file/sb0c00288_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acssynbio.0c00288/suppl_file/sb0c00288_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acssynbio.0c00288/suppl_file/sb0c00288_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acssynbio.0c00288/suppl_file/sb0c00288_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acssynbio.0c00288/suppl_file/sb0c00288_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acssynbio.0c00288/suppl_file/sb0c00288_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acssynbio.0c00288/suppl_file/sb0c00288_si_001.pdf
pubs.acs.org/synthbio?ref=pdf
https://dx.doi.org/10.1021/acssynbio.0c00288?ref=pdf


equivalent to expression of a YFP reporter, despite the fact that
contextual factors such as transcript length (e.g., YFP vs
iSynTF), 5′ UTR, or terminator sequence (e.g., tPGK1 vs
tSSA1) have a known effect on output.29−31 Despite these
shortcomings, the simulations were still able to predict key
qualitative aspects of the experimental data based on the circuit
configuration and expression level. Taken together, these data
indicate that models can serve as a guide to genetic circuit
design when an appropriate characterization of individual parts
is performed.
Characterization of biological parts can be greatly simplified

using technology such as cell-free systems, which remove
complications of host context. Indeed, the use of cell-free
extracts have proven valuable for rational, model-guided design
of complex circuits in these systems.32−34 While there has been
progress toward developing models to guide circuit design in
vivo,15,35 obtaining quantitative precision with predictions
remains challenging. Quantitative model fits can be important
in certain scenarios, such as building models to automate
genetic circuit design. Recently an algorithm was developed to
automate the design of genetic logic gates given a set of user
constraints and a library of transcriptional repressors.11,12,36

The algorithm was successful at designing most circuits, but
was not perfect; failed circuits adopted intermediate states that
did not meet the digital threshold as a result of unexpected part
behavior. This issue of unpredictable part behavior plagues
synthetic biology in general and is a thorn in the side of many
modeling efforts. Ribozymes37 can insulate circuits from
contextual effects, but inevitably there are nontranscriptional
factors that may impact circuit performance. One solution is to
explicitly model these factors, such as circuit−host inter-
action,38,39 that may alter the predicted circuit behavior.
Another powerful solution is the use of -omics level approaches
such as RNA-seq or Ribo-seq to gain highly detailed
information about the functionality of each circuit compo-
nent.40,41 This information can be used to rationally debug a
circuit and may aid in parametrizing more complex models of
circuits.
An alternative application of part models, given the universal

issue of unpredictable part behavior, is theory-guided
exploration of potential circuit behavior. Theory can reveal
circuit topologies that produce a desired phenotype, and has
been used in the past to study biochemical adaptation.42,43

However, insights gained from these studies can often be
difficult to translate into actual designs because there is no
guarantee that biological parts exist in the required parameter
regimes to implement such circuit designs. It may be possible
to use our part characterization methodology to constrain the
parameter space of theoretical explorations, biasing the results
toward circuits that can be constructed using existing parts.
However, our results suggest that parts would need to be
characterized based on the design goal of the circuit. For
example, dynamic part data would need to be collected if
dynamic circuit behavior is desired, and the functionality of
parts under stressors such as glucose depletion may be
important if the circuit is expected to function under stress-
inducing conditions.
Model based simulation of genetic circuit behavior can guide

circuit designs and limit the number of constructs that need to
be tested to achieve a desired behavior. The basis of accurate
circuit models are accurate part models. In this work, we
explored both the amount of model complexity and
experimental data required to achieve qualitative prediction

of circuit behavior. We found that optimization of either the
model or fitting data alone were insufficient to generate
accurate predictions. Our results highlight the necessity of
modeling biological part behavior in the functional context of
potential circuit designs and carefully designing experiments to
enable parametrization of these models. The multidimensional
characterization we detail in this work is a step toward careful,
systematic evaluation of failure modes in circuit models and
identifies one possible method for overcoming these
challenges. While such an approach may require an upfront
investment of time, it can pay dividends in the long term by
shortening the design-build-test cycle for more complex
circuits. The rational engineering of biological circuits will
depend on serious efforts to devise system identification
methods that can provide predictive computational represen-
tations of biological building blocks.

■ METHODS
Construction of DNA Constructs. Hierarchical golden

gate assembly was used to assemble plasmids for yeast strain
construction.27 Individual parts were ordered as gBlocks (IDT)
or PCR amplified (NEB Q5 High-Fidelity 2x Master Mix).
PCR products were purified with a GeneJET PCR Purification
Kit (Thermo Fisher Scientific). These sequences were
domesticated with FastDigest Esp3I (Thermo Fisher Scien-
tific). Transcriptional cassettes were constructed using BsaI-
HF v2 (NEB). Multigene plasmids were constructed using
FastDigest Esp3I. Plasmids are listed in Supplementary Table
S1, and oligos are listed in Supplementary Table S2. The pZ4
sequence was modified from McIssac et al.17 to remove a Gal4
binding site (sequence in Supporting Information).
Chloramphenicol and Ampicillin resistant plasmids were

transformed into chemically competent Mach1 E. coli
(QB3Macrolab), while Kanamycin resistant plasmids were
transformed into chemically competent XL1 Blue E. coli
(QB3Macrolab). Cultures were grown over the course of the
day (Mach1) or overnight (XL1) before prep. Following
growth, cultures were prepared using a GeneJET Plasmid
Miniprep Kit (Thermo Fisher Scientific). Part plasmids were
verified by sequencing (Elim Biopharmaceuticals) using the
listed sequencing primers, while all other plasmids were
verified by restriction enzyme digestion.

Yeast Growth Media. Overnight yeast cultures were
grown in YPD (1% w/v bacto-yeast extract; 2% w/v bacto-
peptone; and 2% w/v dextrose). Yeast transformation cultures
were diluted into fresh YPD. Cultures for flow cytometry were
diluted into SDC (0.67% w/v Difco yeast nitrogen base
without amino acids; 0.2% complete supplement mixture (MP
Biomedicals); and 2% w/v dextrose). For prototrophic
selection following yeast transformation, SDC agar plates
with the appropriate selection were used (Teknova).

Construction of Yeast Strains. All DNA constructs were
transformed into a yeast strain derived from BY4741 (MATa
his3Δ1 leu2Δ0 met15Δ0 ura3Δ0) that had the HIS3 locus
repaired. Yeast transformations were performed as described
previously27 with modifications. One wash with 100 nM
lithium acetate was performed. DNA was combined with 115
μL of transformation mixture and incubated at 42 °C for 30
min. All DNA constructs were genomically integrated. Three
microliters of prepared plasmid were linearized for integration
in a 20 microliter NotI-HF (NEB) reaction for 1 h and then
added to the transformation mixture without purification.
Strains are listed in Supplementary Table S3.
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Flow Cytometry Experiments. Yeast strains were
streaked out onto YPD plates from glycerol stocks. Individual
colonies were picked into 1 mL of YPD in a 2 mL V-bottom
96-well block (Corning/Costar) for overnight growth at 30 °C
and 900 rpm in a Multitron shaker (Infors HT). For the
individual iSynTFs experiments, overnight cultures were
diluted 1:500 in 12 mL of fresh SDC in an 8-row block and
450 μL were aliquoted into a row across 2 new 96 well blocks.
For the cascade experiments, overnight cultures were diluted
1:500 in 45 mL of fresh SDC in a 50 mL trough (Corning) and
400 μL were aliquoted into all wells of a new 96 well block.
The YFP-promoter fusion strains were diluted 1:500 in 500 μL
of fresh SDC in a new 96 well block. Following dilution, blocks
were returned to the shaker for a 2 h outgrowth.
During the 2 h outgrowth, estradiol (Sigma-Aldrich) and

progesterone (Fisher Scientific) induction gradients were
prepared by one-to-one serial dilution. All gradients were
prepared as 10× concentrated solutions.
For the individual iSynTF experiments, 50 μL of the

corresponding solution were added to the 450 μL of culture,
such that final, maximum concentrations of 288 nM and 256
nM of estradiol and progesterone, respectively, were used. For
the cascade characterizations, 50 μL of each solution were
added to the 400 μL of culture in each well in the
corresponding combinations, such that final, maximum
concentrations of 72 nM and 128 nM of estradiol and
progesterone, respectively, were used. Blocks were then
returned to the shaker for 4 h.
Following the 4 h induction, the cultures were prepared for

flow cytometry. One hundred microliters of culture were mixed
with 100 μL of fresh SDC in a 96-well U-bottom microplate
(Greiner Bio-One). Samples were measured on a BD
LSRFortessa X20 (BD Biosciences) using a high-throughput
sampler. YFP-Venus fluorescence was measured using the
FITC-H channel (voltage = 434). Measurements were
normalized by dividing by SSC-H (voltage = 200). Analysis
was performed with Python 3.7, custom scripts, and the
FlowCytometryTools package. All experiments were per-
formed in triplicate, with replicates collected on separate
days. Reported values represent the mean and standard
deviation of median normalized fluorescence values of the
triplicates.
Model: Simple Hill Function. Under this model, we

assume that the iSynTF is constitutively produced and has
reached its steady state concentration (X). The concentration
of hormone in the media is denoted by H. Then the steady-
state concentration of the reporter protein (Y) is described as a
simple Hill function with maximum synthesis rate μY, basal
activity α ∈ [0, 1], dissociation constant K, Hill coefficient n,
and degradation rate γ:

f X H
X H

X H K
( , ) (1 )

( )
( )Y

n

n nsh μ α α= + − ·
· +

i
k
jjjj
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{
zzzz
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Y f X H( , )/sh γ= (2)

Model: Expanded Hill Function. As shown in Figure 1,
the simple Hill model described above fails to capture the
effect of the iSynTF concentration (X) on the basal expression
level and saturation of the inducer dose response output (Y).
To better recapitulate the observed behavior, we include the
allosteric regulation of the iSynTF by the inducer in our model
with the following considerations:

1. In the absence of hormone (H = 0), increasing iSynTF
expression (e.g., using a stronger constitutive promoter)
increases the output expression level, suggesting some
leaky or basal activation of the regulated promoter by
free iSynTF.

2. As the iSynTF expression decreases, a minimum output
expression level is observed for low hormone concen-
trations, suggesting some leaky expression of the
regulated promoter independent of the iSynTF.

3. As both iSynTF and hormone concentration increase,
the output expression level saturates at a maximum
value.

4. With low iSynTF expression, the output expression level
saturates at a lower level as hormone concentration
increases, suggesting that the stoichiometric relationship
of the iSynTF and hormone molecules might play an
important role in output regulation.

Then, the proposed model is

X H X K X HX X X0 ( ) such thatH X H H
2= − + + + ≤

(3)

f X X

X X X
X X X K

( , ) (1 )

( ( ))
( ( ))

Y H Y

H H
n

H H
n n

μ α α

β
β

= + −

+ −
+ − +

i
k
jjjjj

y
{
zzzzz (4)

Y f X X( , )/Y H γ= (5)

Eq 3 represents the allosteric regulation of iSynTF by the
hormone, where XH is the active iSynTF (i.e., bound to the
hormone, H), and X is the total iSynTF concentration in the
cell (e.g., determined by the used promoter driving iSynTF
expression). H is the total intracellular hormone concentration,
which is assumed constant throughout the experiment, and
proportional to the amount added to the media. KX is the
dissociation constant associated with the hormone-iSynTF
interaction. The synthesis rate of the regulated promoter f Y
(XH, X) is still modeled as Hill function but dependent on the
active iSynTF and a fraction (β) of the inactive iSynTF in the
nucleus (X − XH), with Hill coefficient n and dissociation
constant K. As in the simple Hill model, μY is the maximum
synthesis rate given the translocation rate and gene, and α ∈
[0, 1] is the basal expression of the output gene (in the absence
of iSynTF). Then the output steady state is simply the
synthesis rate function ( f Y (XH, X)) over the output
degradation rate (γ; eq 5). Here, (1) the parameter β
represents the basal activation by free iSynTF; (2) the
parameter α represents the leakiness of the regulated
promoter; (3) eq 4 considers the possible saturation with
large hormone and iSynTF; and (4) eq 3 incorporates the
stoichiometric relationship between the free iSynTF, hormone,
and active iSynTF. This model recapitulates most of the
qualitative behavior of the iSynTF regulation for several
constitutive promoter strengths and hormone concentrations
(see Figure 2 and Figure S1).

Model: Two-Step Transcriptional Cascade. We explore
the circuit design of a two-step transcriptional cascade, where
the constitutively expressed first iSynTF (X1) induces
expression of a second iSynTF (X2), which in turn induces
expression of a YFP reporter (Y). Each of these iSynTFs is
modeled using the expanded Hill model (eqs 3−5; Figure 3).
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First we solve the steady state of the second iSynTF (X2) as a
function of the first iSynTF concentration (X1) and its inducer
(H1): X = f Y,1 (X1,H, X1)/γ, using the parameters fit to the first
iSynTF regulation. Then, we calculate the YFP steady state (Y)
by simply feeding the second iSynTF concentration and its
inducer (H2) to the model again: Y = f Y,2 (X2,H, X2)/γ, using
the parameters fit to the second iSynTF regulation.
Model: Fitting. The goal is to minimize the error between

the observed data (D) and the model prediction (Y) for a
given model and parameter set (θ). We define our error
function simply as the sum of squared errors in logarithmic
scale:
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The mean squared error (MSE) and mean squared prediction
error (MSPE) metrics shown in the figures correspond to the
error function described above normalized by the number of
data points considered, against either the data used for fitting
the model (MSE) or new data to be predicted (MSPE).
We use a metropolis random walk (MRW) algorithm to

explore the parameter space implemented as follows:

1. Choose some initial parameters θ1 and calculate its
fitting error χ2(1).

2. Iterate over t = {1, 2, ..., tmax} as follows:
a. Draw a random proposal ϕ ∼ θ(t) × 2N∥θ∥(0,Σ)

where N∥θ∥(0, Σ) is a multivariate normal
distribution with the same dimension as θ(t),
mean zero, and covariance matrix Σ = 0.1.

b. We construct a likelihood function using a
Gaussian function:

P D( ) exp( )2θ χ| = −
where θ is the set of parameter to be optimized, D
is the optimal data, and χ2 is the error function.
Note the likelihood is maximal when the error is
minimal. Then we calculate the likelihood ratio:

exp( )P D
P D t

( )
( )

2 2
( )t( )

χ χ= − +ϕ
θ ϕ
|

|

Accept the proposed ϕ if the ratio is larger than
a random number ∼ U[0, 1]. The proposed value
is always accepted if the error is smaller (i.e., it is
better).

c. Update parameters θ(t+1) ← ϕ with probability

( )min 1, P D
P D

( )
( )t( )

ϕ
θ
|

|
; otherwise, θ(t+1) ← θ(t).

For each model-data combination (Figures 1A, 2A, S1D,E,
S4, S5), the MRW algorithm was run for 1000 chains starting
from random parameter sets chosen from a log-uniform
distribution, and each chain was run for 20 000 iterations (i.e.,
tmax = 20 000). We enforced that the parameters stay in a
realistic range with the following limits: KX = [1 × 10−3, 1000]
nM; β = [2 × 10−7, 0.2]; n = [1 × 10−5, 10]; K = [1 × 10−4,
100] nM; α = [2 × 10−7, 0.2]; μY = [2 × 10−6, 2] nM min−1.
We assume YFP dilution/degradation rate has a fixed value, γY
= 0.01 min−1, and the measured fluorescence arbitrary units
([a.u.]) are proportional to the molecule concentration
([nM]), with 1 a.u.= 0.4 nM. The parameter values listed in
Supplementary Table S4 correspond to the parameter set with
the observed minimum MSE for all MRW. Supplementary
Figure S2 shows the parameter values and model behavior for

the lowest observed MSE for each MRW for the expanded Hill
model fit to the inducer dose response of GEM, Z3PM, and
Z4EM at three expression levels (pRNR2, pRNR2, and pTEF1
constitutive promoters).
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■ ABBREVIATIONS

iSynTF, inducible synthetic transcription factor; YFP, yellow
fluorescent protein; GEM, Gal4 DNA binding domain,
estradiol ligand binding domain, Msn2 activating domain;
Z3PM, Z3 DNA binding domain, progesterone ligand binding
domain, Msn2 activating domain; Z4EM, Z4 DNA binding
domain, estradiol ligand binding domain, Msn2 activating
domain.
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