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Figure S1. Feedback logic and
CoRa values. We abstract the
control system to a two-node net-
work where one node represents the
output to be controlled (Y ), and
the other the rest of the system in-
cluding the dependency on the pa-
rameter ρ to be perturbed (x(ρ)).
The locally analogous system can
be represented as an equivalent net-
work, with a third node (∗) that rep-
resent the new input into the x(ρ)
node. The other link from x(ρ) to
the output (YNF ; link #1) remains
the same between the two networks.
(Left column) The sign of link #1
can be determined by comparing
the output before (YNF |Θ = Y |Θ)
and after (YNF |Θ,ρ→ρ′) the pertur-
bation. For a positive perturba-
tion, link #1 is positive (#1 (+))
if and only if YNF |Θ,ρ→ρ′ > Y ,
or negative (#1 (−)) if and only
if YNF |Θ,ρ→ρ′ < Y . (Middle col-
umn) The sign of the feedback
link from the output to the x(ρ)
node (link #2) can be determined
by comparing the output after the
perturbation in the feedback sys-
tem (Y |Θ,ρ→ρ′) and in the locally
analogous system (YNF |Θ,ρ→ρ′). It
is positive (#2 (+)) if and only
if Y |Θ,ρ→ρ′ > YNF |Θ,ρ→ρ′ , or
negative (#2 (−)) if and only if
Y |Θ,ρ→ρ′ < YNF |Θ,ρ→ρ′ . (Right
column) Given the formula for
CoRa, we can see that CoRaθ∈Θ(ρ)
is bound between 0 and 1 whenever
we have a negative feedback, and
bigger than 1 in the case of a posi-
tive feedback.
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Figure S2. Antithetic feedback control performance depends on controlled subsystem. Three different
subsystems (Eqs. 38-40) of increasing complexity (controlled subsystem highlighted in gray) controlled by the antithetic
feedback control (ATF) can be compared using the CoRa function. (A) CoRa plots for modified ATF with inactive
complex C (v1). First row shows a schematic controlled subsystem. CoRaµY∈Θ(µY ) is computed for 7 different values
of a given parameter that is also varied in addition to µY . The identity and nominal value of the varied parameter
(either µW the W synthetic rate, or η+ the U : W binding rate) is indicated on every plot, and how it is varied is
shown in between the two panels of the figure with appropriate color-coding information. (B) Same as (A) but
modified ATF with active complex C (v2). See Section S4 for equations and Table S2 for parameter values.

3/27



Figure S3. CoRa can be computed for perturbation of any parameter as a function of another
parameters. Plots are shown for the two versions of the modified antithetic feedback (ATF) control. (A) CoRa
plot as a function of U synthesis rate (µU ) as µU itself is perturbed. (B) CoRa plot as a function of Y synthesis
rate (µY ) as µU is perturbed. (C) CoRa plot as a function of Y synthesis rate (µY ) as W synthesis rate (µW ) is
perturbed. ATF v1, blue continuous lines; ATF v2, pink long-dash lines. See Section S4 for equations and Table S2
for parameter values.
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Figure S4. Effect of dilution on the modified antithetic feedback (ATF) control and system saturation.
Effect of dilution (γ; see column titles) on the ATF control performance following perturbations to µY , the synthesis
rate of Y , as this parameter itself is varied, with either inactive (v1; A) or active (v2; B) complex C. (A) For ATF
v1, as µY decreases, CoRaµY ∈Θ(µY ) increases. When W steady state concentration (Wss) saturates approaching its
limit value ( µW

γ+γW
), CoRaµY ∈Θ(µY ) approaches 1. On the other extreme, as µY increases, CoRaµY ∈Θ(µY ) increases.

When total W at steady-state (WT,ss = Wss + Css) concentration saturates (WT,ss → µW
γ+γW+η−

), U steady-state

concentration (Uss) cannot increase proportionally to µY to allow free Wss to decrease in the same proportion (given
that in steady state, Wss = Kd

Css
Uss

; see Section S2.1.1). (B) For ATF v2, CoRaµY ∈Θ(µY ) increases for both low and
high µY values as total W steady state concentration (WT,ss = Wss + Css) saturates, reaching its higher ( µW

γ+γW
)

and lower ( µW
γ+γW+η−

) limit values, respectively (see Section S2.1.2). In all plots, limits are shown as horizontal gray

lines, and gray dashed lines increasing or decreasing proportionally to µY are shown as reference. See Section S4 for
equations and Table S2 for parameter values.
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Figure S5. Negative auto-regulation affecting synthesis represented by Michaelis-Menten function
limits control performance in multiple motifs, but is alleviated by ultrasensitivity. In this figure, the

negative auto-regulation function is modeled as a negative Hill function, f�(Y ) = µ�
Kn
D

Y n+Kn
D

, where µ� is the

maximum synthesis rate, KD is the EC50, and n is the Hill coefficient. Four of the explored motifs in Fig. 3 include
negative synthesis regulation (f�(Y )): (A-B) Buffering + Negative Feedback (BNF v1 & v2; Fig. 3G-H), (C)
Feedback + Feedforward Loop (FFL; Fig. 3I), and (D) Brink Motif Feedback with repression of activator (BMF
v2; Fig. 3K). For each motif, plots show CoRa function for perturbations to the Y synthesis rate (µY ) as the Hill
coefficient n increases. (In all cases, the black line corresponds to the black line in Fig. 3). For (D) BMF v2, we
also show how the CoRa function changes while increasing the inactivation rate βI ([nM−1min−1]) from U to UP ,
which is dependent on I. We corroborate that, as shown by Samaniego & Franco [8], the BMF motif displays high
ultrasensitivity, and the ultrasensitivity increases as βI increases. In all cases, higher ultrasensitivity (either by
increasing the Hill coefficient n or βI for BMFv2) results in improved control performance for some range of µY
values (CoRaµY ∈Θ(µY ) approaching zero). See Section S4 for equations and Table S2 for parameter values.
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Figure S6. Optimizing a controller for different subsystems. (A) Diagrams for three different subsystems
(Eqs. 38-40; gray boxes) that are controlled using the feedback by active degradation motif (FAD v1). (B) The feedback
control parameters (U synthesis rate dependent on Y , µU ; W constitutive synthesis rate, µW ; and U,W binding
rate, η+) can be optimized for each subsystem to drive CoRa below a given threshold (|CoRaµY ∈Θ(µY ) ≤ 0.1|)for
a large dynamic range in µY , the synthesis rate of Y . The optimization stops after 1000 iterations or whenever
CoRaµY ∈Θ(µY ) ≤ 0.1 for the whole range of µY values considered; see Section S5.1 for algorithm details. Optimization
traces (min(CoRaµY ∈Θ(µY )), gray; |CoRaµY ∈Θ(µY ) ≤ 0.1|, black), as well as the associated parameter values
({µU , µW , η+}), are shown for each system; the CoRaµY ∈Θ(µY ) curves for some iterations are also shown. See
Section S4 for equations and Table S2 for parameter values.
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Table S1. Used parameter values in main figures.

Fig. 2B ATF v1 & v2
(Section S4.1)

γ = 1 × 10−4min−1, γU = 1 × 10−4min−1, γW = 1 × 10−4min−1,
µU = 0.125min−1, µW = 0.1nM min−1, η0 = 1 × 10−4min−1, η+ =
0.0375nM−1min−1, η− = 0.5min−1, γY = 1min−1

Fig. 2C ATF v1 & v2
(Section S4.1)

γ = 1 × 10−4min−1, γU = 1 × 10−4min−1, γW = 1 × 10−4min−1,
µU = 0.125min−1, µW = 0.1nM min−1, η0 = 1 × 10−4min−1, η+ =
0.0375nM−1min−1, µY = 0.125min−1, γY = 1min−1

Fig. 2D ATF v1 & v2
(Section S4.1)

γ = 1 × 10−4min−1, γU = 1 × 10−4min−1, γW = 1 × 10−4min−1,
µU = 0.125min−1, µW = 0.1nM min−1, η0 = 1 × 10−4min−1,

η+ = 0.0375nM−1min−1, η− = 0.5min−1, γY = 1min−1, µ
(i)
Y =

{0.3863, 3.9, 125}min−1

Fig. 3A ATF v1 (Sec-
tion S4.1)

γ = 0.01min−1, γU = 1 × 10−4min−1, γW = 1 × 10−4min−1, µU =
0.125min−1, η0 = 1×10−4min−1, η+ = 0.0375nM−1min−1, η− = 0.5min−1,
γY = 0.1min−1, µW = 1.015nM min−1 (black line; Y ≈ 10nM for
µY = 1min−1).

Fig. 3B FAD v1 (Sec-
tion S4.2)

γ = 0.01min−1, γU = 0.05min−1, γW = 1× 10−4min−1, µU = 0.125min−1,
η0 = 1 × 10−4min−1, η+ = 0.0375nM−1min−1, η− = 0.5min−1, γY =
0.1min−1, µW = 0.74nM min−1 (black line; Y ≈ 10nM for µY = 1min−1).

Fig. 3C FDP v1 (Sec-
tion S4.3)

γ = 0.01min−1, γU = 0.05min−1, γW = 1× 10−4min−1, µU = 0.125min−1,
η0 = 1 × 10−4min−1, η+ = 0.0375nM−1min−1, η− = 0.5min−1, KD =
0.02nM , γY = 0.1min−1, µW = 0.7545nM min−1 (black line; Y ≈ 10nM for
µY = 1min−1).

Fig. 3D ATF v2 (Sec-
tion S4.1)

γ = 0.01min−1, γU = 1 × 10−4min−1, γW = 1 × 10−4min−1, µU =
0.125min−1, η0 = 1×10−4min−1, η+ = 0.0375nM−1min−1, η− = 0.5min−1,
γY = 0.1min−1, µW = 0.478nM min−1 (black line; Y ≈ 10nM for
µY = 1min−1).

Fig. 3E FAD v2 (Sec-
tion S4.2)

γ = 0.01min−1, γU = 0.05min−1, γW = 1× 10−4min−1, µU = 0.125min−1,
η0 = 1 × 10−4min−1, η+ = 0.0375nM−1min−1, η− = 0.5min−1, γY =
0.1min−1, µW = 0.327nM min−1 (black line; Y ≈ 10nM for µY = 1min−1).

Fig. 3F FDP v2 (Sec-
tion S4.3)

γ = 0.01min−1, γU = 0.05min−1, γW = 1× 10−4min−1, µU = 0.125min−1,
η0 = 1 × 10−4min−1, η+ = 0.0375nM−1min−1, η− = 0.5min−1, KD =
0.02nM , γY = 0.1min−1, µW = 0.333nM min−1 (black line; Y ≈ 10nM for
µY = 1min−1).

Fig. 3G BNF v1 (Sec-
tion S4.4)

γ = 0.01min−1, γU = 1 × 10−4min−1, µU = 2min−1, KD = 1nM , γY =
0.1min−1, β = 0.1565min−1, βP = 1 × 10−4min−1 (black line; Y ≈ 10nM
for µY = 1min−1).

Fig. 3H BNF v2 (Sec-
tion S4.4)

γ = 0.01min−1, γU = 1 × 10−4min−1, µU = 2min−1, KD = 1nM , γY =
0.1min−1, β = 0.0108min−1, βP = 0.1565min−1 (black line; Y ≈ 10nM for
µY = 1min−1).

Fig. 3I FFL v1 (Sec-
tion S4.5)

γ = 0.01min−1, γU = 0.01min−1, γW = 0.01min−1, µW = 0.125min−1,
KD = 1nM , γY = 0.1min−1, and µU = 0.0334min−1 (black line; Y ≈ 10nM
for µY = 1min−1).

Fig. 3J BMF v1 (Sec-
tion S4.6)

γ = 0.01min−1, µU = 0.1nM min−1, η0 = 1 × 10−4min−1, η+ =
0.05nM−1min−1, βA = 0.5nM−1min−1, βI = 0.5nM−1min−1, γY =
0.1min−1, µA = 0.0338nM min−1, µI = 0.0125min−1 (black line; Y ≈ 10nM
for µY = 1min−1).

Fig. 3K BMF v2 (Sec-
tion S4.6)

γ = 0.01min−1, µU = 0.1nM min−1, η0 = 1 × 10−4min−1, η+ =
0.05nM−1min−1, βA = 0.5nM−1min−1, βI = 0.5nM−1min−1, γY =
0.1min−1, µA = 0.372nM min−1, KD = 1nM , µI = 0.125nM min−1 (black
line; Y ≈ 10nM for µY = 1min−1).
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Table S2. Used parameter values in supplementary figures.

Fig. S2A ATF v1 (Sec-
tion S4.1 & Sec-
tion S2.2)

γ = 0.01min−1, γU = γW = 1 × 10−4min−1, µU = 0.125min−1, µW =
0.1nM min−1, η0 = 1 × 10−4min−1, η+ = 0.0375nM−1min−1, η− =
0.5min−1, γY = 1min−1; and specifically for the double-negative subsys-
tem: KD = 1nM , µ0 = 1.25min−1, µ1 = 12.5nM min−1, K1 = 1nM , and for
the subsystem with positive feedback: µ0 = 1.25min−1, µ1 = 12.5nM min−1,
µP = 10nM min−1, KP = 1nM (black lines).

Fig. S2B ATF v2 (Sec-
tion S4.1 & Sec-
tion S2.2)

γ = 0.01min−1, γU = γW = 1 × 10−4min−1, µU = 0.125min−1, µW =
0.1nM min−1, η0 = 1 × 10−4min−1, η+ = 0.0375nM−1min−1, η− =
0.5min−1, γY = 1min−1; and specifically for the double-negative subsys-
tem: KD = 1nM , µ0 = 1.25min−1, µ1 = 12.5nM min−1, K1 = 1nM , and for
the subsystem with positive feedback: µ0 = 1.25min−1, µ1 = 12.5nM min−1,
µP = 10nM min−1, KP = 1nM (black lines).

Fig. S3 ATF v1 & v2
(Section S4.1)

γ = 1 × 10−4min−1, γU = 1 × 10−4min−1, γW = 1 × 10−4min−1,
µW = 0.1nM min−1, η0 = 1 × 10−4min−1, η+ = 0.0375nM−1min−1,
η− = 0.5min−1, γY = 1min−1, and µY = 0.125min−1, µU = 0.125min−1,
unless explicitly varied.

Fig. S4A ATF v1 (Sec-
tion S4.1)

γU = γW = 0, µU = 0.125min−1, µW = 0.1nM min−1, η0 = 1× 10−4min−1,
η+ = 0.0375nM−1min−1, η− = 0.5min−1, γY = 1min−1, γ = {0.001, 1 ×
10−5, 1× 10−7}min−1

Fig. S4B ATF v2 (Sec-
tion S4.1)

γU = γW = 0, µU = 0.125min−1, µW = 0.1nM min−1, η0 = 1× 10−4min−1,
η+ = 0.0375nM−1min−1, η− = 0.5min−1, γY = 1min−1, γ = {0.001, 1 ×
10−5, 1× 10−7}min−1

Fig. S5A BNF v1 (Sec-
tion S4.4)

γ = 0.01min−1, γU = 1 × 10−4min−1, µU = 2min−1, KD = 1nM , γY =
0.1min−1, β = 0.1565min−1, βP = 1× 10−4min−1, n = {1, 10, 100}.

Fig. S5B BNF v2 (Sec-
tion S4.4)

γ = 0.01min−1, γU = 1 × 10−4min−1, µU = 2min−1, KD = 1nM , γY =
0.1min−1, β = 0.0108min−1, βP = 0.1565min−1, n = {1, 10, 100}.

Fig. S5C FFL v1 (Sec-
tion S4.5)

γ = 0.01min−1, γU = 0.01min−1, γW = 0.01min−1, µW = 0.125min−1,
KD = 1nM , γY = 0.1min−1, and µU = 0.0334min−1, n = {1, 10, 100}.

Fig. S5D BMF v2 (Sec-
tion S4.6)

γ = 0.01min−1, µU = 0.1nM min−1, η0 = 1 × 10−4min−1, η+ =
0.05nM−1min−1, βA = 0.5nM−1min−1, γY = 0.1min−1, µA =
0.372nM min−1, KD = 1nM , µI = 0.125nM min−1, n = {1, 10, 100},
βI = {0.5, 5, 50}nM−1min−1.

Fig. S6B FAD v1 (Sec-
tion S4.2 & Sec-
tion S2.2)

γ = 0.01min−1, γU = 0.05min−1, γW = 1×10−4min−1, η0 = 1×10−4min−1,
η− = 0.5min−1, γY = 1min−1; and specifically for the double-negative subsys-
tem: KD = 1nM , µ0 = 1.25min−1, µ1 = 12.5nM min−1, K1 = 1nM , and for
the subsystem with positive feedback: µ0 = 1.25min−1, µ1 = 12.5nM min−1,
µP = 10nM min−1, KP = 1nM ; initial parameter values: µU = 0.125min−1,
µW = 0.1nM min−1, η+ = 0.0375nM−1min−1.
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Note: Across this document, capital letters (e.g. X) represent both the species and its concentration; the sub-index
Xss refers to the steady state value; and lower-case Greek letters represent parameters, which by default are
non-negative real numbers.

S1 CoRa approach

CoRa –or Control Ratio– aims to quantify the effect of feedback control on a system’s ability to reject a step
perturbation, while considering the effect and constraints of the individual biochemical events. This is done by
directly comparing the feedback system of interest to a locally analogous system without feedback under the
formalism of mathematically controlled comparisons [1]. Each locally analogous system has exactly the same
biochemical reactions and parameters as the original feedback system (i.e. internal equivalence), with the exception of
the feedback input from the controlled subsystem. For each specific parameter set Θ (i.e. the value of all parameters
describing the system of interest), the feedback input is substituted by an equivalent constant input calibrated such
that the steady-state of all common species between the two systems are identical before a perturbation is applied
(i.e. external equivalence). This equivalence allows for a direct comparison of the output change of both systems
following a specific step perturbation (e.g. step change in a parameter value), while accounting for the influence of
the nonlinearity, saturation, and other intrinsic particularities of the system, and guarantying that any differential
response of these two analogous systems represents an inherent functional difference associated with the feedback
control. The perturbation considered must not affect the constant input of the locally analogous system, as otherwise
the differential output response can no longer be uniquely associated with the feedback control.

Let Yss|Θ denote the steady-state value of the system with feedback for a parameter set Θ, and Yss,NF |Θ denote
the steady-state value of the locally analogous system without feedback. Let’s also consider a a small step
perturbation of a specific parameter ρ ∈ Θ (ρ→ ρ′). Following this perturbation, Yss|Θ,ρ→ρ′ and Yss,NF |Θ,ρ→ρ′
denote that new steady-states of the feedback system and locally analogous system without feedback,respectively.

CoRa is then defined as:

CoRaθ∈Θ(ρ) =
∆log(Yss)|Θ,ρ→ρ′

∆log(Yss,NF)|Θ,ρ→ρ′
(1)

=
log(Yss|Θ,ρ→ρ′)− log(Yss|Θ)

log(Yss,NF |Θ,ρ→ρ′)− log(Yss,NF |Θ)

=
log
(
Yss|Θ,ρ→ρ′
Yss|Θ

)
log
(
Yss,NF |Θ,ρ→ρ′
Yss,NF |Θ

)
Note that by construction the output of the feedback system and the locally analogous system without feedback are
identical before a perturbation, i.e. Yss|Θ = Yss,NF |Θ.

Assuming that ∆ρ = ρ′ − ρ is small enough, the output of the feedback system and the locally analogous system
without feedback can be expressed as linear functions of ∆ρ. The corresponding CoRa function can then be written
as:

CoRaθ∈Θ(ρ) =
log(Yss(ρ+ ∆ρ))− log(Yss(ρ))

log(Yss,NF (ρ+ ∆ρ))− log(Yss,NF (ρ))

≈
log(Yss(ρ)) + ∆ρ d

dρ log(Yss)|ρ − log(Yss(ρ))

log(Yss,NF (ρ)) + ∆ρ d
dρ log(Yss,NF )|ρ − log(Yss,NF (ρ))

≈
d
dρ log(Yss)|ρ

d
dρ log(Yss,NF )|ρ

(2)

Eq. 2 shows that in this regime, CoRa value is approximately independent of the perturbation size ∆ρ. In all the
analyses presented on this paper, we used ρ′ = 1.05ρ. We corroborated that this perturbation size was small enough
to reach the linear regime by confirming that identical results were obtained with ρ′ = 1.01ρ. Nevertheless, with the
smaller perturbation size (ρ′ = 1.01ρ), noise in the numerical solutions was observed for some cases. In general, like
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for any linearization exercise, the acceptable perturbation size for numerical solutions needs to be evaluated for the
specific system and conditions of interest.

The value of CoRaθ∈Θ(ρ) can be easily related to the logic of the feedback (Fig. S1). If CoRaθ∈Θ(ρ) ∈ [0, 1), the
presence of the feedback reduces the effect of the perturbation compared to the locally analogous system without
feedback, i.e. the system has an active negative feedback: either 0 ≤ ∆log(Yss)|Θ,ρ→ρ′ < ∆log(Yss,NF )|Θ,ρ→ρ′ or
0 ≥ ∆log(Yss)|Θ,ρ→ρ′ > ∆log(Yss,NF )|Θ,ρ→ρ′ . On the other hand, if CoRaθ∈Θ(ρ) > 1, the presence of the feedback
amplifies the effect of the perturbation compared to the locally analogous system without feedback, i.e. the system
has an active positive feedback: either ∆log(Yss)|Θ,ρ→ρ′ > ∆log(Yss,NF )|Θ,ρ→ρ′ > 0 or
∆log(Yss)|Θ,ρ→ρ′ < ∆log(Yss,NF )|Θ,ρ→ρ′ < 0. Finally, if CoRaθ∈Θ(ρ) = 1, the feedback is effectively inactive. As the
goal of CoRa is to quantify feedback control, which by definition requires a corrective (negative) feedback regulation,
CoRaθ∈Θ(ρ) is bounded between 0 and 1 for the cases of interest. More specifically, CoRaθ∈Θ(ρ) = 0 only if the
system displays perfect control (Yss|Θ,ρ→ρ′ = Yss|Θ), and CoRaθ∈Θ(ρ) value increases as the control effect decreases
up until CoRaθ∈Θ(ρ) = 1, when the feedback contribution is effectively zero (i.e. the system response to the
perturbation is exactly the same that the one of the system without feedback).

S2 Analysis of a modified antithetic feedback control strategy using
CoRa

We consider a modified antithetic feedback motif (ATF; based on Briat et al. [2]) with a simple controlled subsystem
consisting of a single molecule Y . The ATF motif consists of two molecules U and W that bind to each other forming
a transitory complex C. C is then degraded leading to the disappearance of both U and W . Y is produced at a rate
that depends on the concentration of W , while U synthesis is induced by Y . The equations of the full system with
feedback are then given by:

d

dt
U = µUY − (γ + γU )U − η+UW + (η0 + γW )C (3)

d

dt
W = µW − (γ + γW )W − η+UW + (η0 + γU )C (4)

d

dt
C = η+UW − (γ + η0 + η− + γU + γW )C (5)

For Y dynamics, two alternative scenarios can be easily foreseen: W can be either inactivated as a transcription
factor once it binds U (ATF v1; Fig. 2A,3A),

d

dt
Y = µYW − (γ + γY )Y (6)

or W retains its transcription factor activity until degraded (ATF v2; Fig. 2A,3D),

d

dt
Y = µY (W + C)− (γ + γY )Y (7)

Here all species are subject to loss by dilution (γ), in addition of their own individual degradation rates (γ�), µ�

represents the synthesis rate for each molecule (either constitutive, µW , or dependent of a transcription factor, µU and
µY ), and η− is the co-degradation rate of U,W in the complex form C; η+ is the binding rate of U and W (forming
the complex C); and η0 is the spontaneous unbinding rate of these two molecules (dissociating the complex C).

Choosing Y as the system’s output, the corresponding locally analogous system without feedback maintains the
same ODE equations (Eqs. 4-5, and either Eq. 6 or Eq. 7), with the exception of dU

dt ,

d

dt
U = µUY∗ − (γ + γU )U − η+UW + (η0 + γW )C (8)

where U synthesis rate now depends on a new molecule Y∗ with dynamics

d

dt
Y∗ = µY∗ − (γ + γY∗)Y∗ (9)
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such that Y∗ is constitutively expressed with synthesis µY ∗. If γY ∗ = γY , then the steady state output of the locally
analogous system without feedback Yss,NF is equal to the steady state output of the feedback system Yss if either
µY ∗ = µYWss or µY ∗ = µY (Wss + Css), depending on the feedback system being considered (ATF v1 or ATF v2).

In this case, since Y∗ in the locally analogous system without feedback does not depend on any other molecule in
the system, its concentration will remain constant after any type of perturbation. As mentioned above, this is an
important requirement for the mathematically controlled comparison: if a perturbation also affects Y∗ value (e.g.
experimental perturbations on dilution, γ), the feedback system and the locally analogous system differ in more than
just the feedback information (Fig. S1D), and the CoRa value cannot be interpreted as simply the feedback
contribution.

As described by Briat et al. [2], assuming there is no dilution (γ = 0) as well as no individual degradation of U
and W (i.e. independent of the complex formation C; γU , γW = 0), this system (Eqs. 4-5) is expected to display
perfect step disturbance rejection (integral control or perfect adaptation):

d

dt
U = µUY − η+UW + η0C

d

dt
W = µW − η+UW + η0C

then
d

dt
(U −W ) = µUY − µW

and if
d

dt
Uss =

d

dt
Wss = 0 then Yss =

µW
µU

(10)

In other words, Yss is controlled to a reference value µW
µU

, to which it returns exactly after any step perturbation to

the system, provided that the steady-state exists and it is stable (see Olsman et al. [7] for further discussion). This
conclusion is independent of the particular subsystem being controlled, W being inactive (Eq. 6) or active (Eq. 7) in
the complex form, as well the active degradation rate (η−), and complex formation dynamics ( ddtC).

S2.1 Understanding effect of saturation on modified antithetic feedback control

S2.1.1 ATF control limits with inactive complex

In this section we prove that for the system described in Eqs. 3-6, if (γ + γW ) > 0, as Y -synthesis rate (µY ) value
decreases, CoRaµY ∈Θ(µY )→ 1. Similarly, if (γ + γU ) > 0, as µY increases, CoRa saturates with
CoRaµY ∈Θ(µY )→ 0.5. These analytically argued results are corroborated by computational demonstrations in
Figure S4A.

Proposition 1. For the system described in Eqs. 3-6, as µY → µ′Y , ∆log(Yss) = ∆log(µY ) + ∆log(Wss). Here, for
brevity, we denote Yss|Θ,µY by Yss, and Yss|Θ,µ′Y by Y ′ss, and similarly for Wss. Therefore
∆log(Yss) = log(Y ′ss)− log(Yss), ∆log(Wss) = log(W ′ss)− log(Wss), and ∆log(µY ) = log(µ′Y )− log(µY ).

Proof. Given Eq. 6, the output steady state for the system is

Yss =
( µY
γ + γY

)
Wss (11)

After a perturbation µY → µ′Y , the new output steady state can be written as

Y ′ss =
( µ′Y
γ + γY

)
W ′ss (12)

Then, the effect of the perturbation on the system can be quantified as

∆log(Yss) = log(Y ′ss)− log(Yss) = log
(Y ′ss
Yss

)
= log

(( µ′Y
γ+γY

)
W ′ss(

µY
γ+γY

)
Wss

)
= log

((µ′Y
µY

)(W ′ss
Wss

))
= ∆log(µY ) + ∆log(Wss) (13)
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where the effect of the feedback is introduced by the ∆log(Wss) component.

Consequence 1. In the absence of feedback (i.e. when U and the W do not depend on Y ), Wss should remain
constant after a µY -perturbation, i.e. ∆log(Wss) = 0. Then, for this system, the effect of the step µY perturbation is
simply equal to the size of the perturbation, i.e. ∆log(Yss) = ∆log(µY ).

Consequence 2. By definition, a system has feedback control if the presence of feedback reduces the effect of the
perturbation over the output change, i.e. |∆log(Yss)| < |∆log(µY )|. Then, in order to have feedback control,
∆log(Wss) < 0 if ∆log(µY ) > 0 (and vice versa). It follows that in a range of µY values with effective feedback
control, Wss must decrease monotonically as µY value increases.

Proposition 2. For the system described in Eqs. 3-6, if (γ + γW ) > 0, the total W steady state
(WT,ss = Wss +Css) has an upper limit and lower limit that is independent of µY . Additionally, WT,ss approaches its
upper limit when Wss ≈WT,ss, and its lower limit when Css ≈WT,ss.

Proof. Let’s define total W as the sum of free molecule W and the complex molecule C, i.e. WT = W + C. Then,
the equation of change of WT corresponds to the sum of Eq. 4 and Eq. 5:

d

dt
WT =

d

dt
W +

d

dt
C

= µW − (γ + γW )(W + C)− η−C (14)

Without loss of generality, we represent C as a fraction of the total W , αWT with α ∈ [0, 1]:

d

dt
WT = µW − (γ + γW + αη−)WT (15)

Then, in steady state:

WT,ss =
µW

γ + γW + αη−
(16)

Given that all involved parameters are non-negative, and α ∈ [0, 1]:

µW
γ + γW + η−

≤ µW
γ+γW+αη−

≤ µW
γ + γW

µW
γ + γW + η−

≤ WT,ss ≤ µW
γ + γW

(17)

Notice that the upper limit exists only if (γ + γW ) > 0. Moreover, it is clear that WT,ss approaches its upper limit
when α→ 0, i.e. WT,ss ≈Wss, while WT,ss approaches its lower limit when α→ 1, i.e. WT,ss ≈ Css.

Proposition 3. For the system described in Eqs. 3-6, and within the range of µY for which the feedback is effective
(i.e. |∆log(Yss)| < |∆log(µY )| for all µY values within the range), CoRaµY ∈Θ(µY )→ 1 as µY decreases, provided
that (γ + γW ) > 0.

Proof. As WT,ss = Wss + Css is upper bounded (Eq. 17), Wss must have an upper limit as well (i.e. its
supremum, supµY (Wss) ≤ µW

γ+γW
). By Consequence 2 above, within the µY range where feedback control is effective,

Wss value increases as the µY value (before a perturbation is applied) decreases. Therefore, as µY decreases, Wss

approaches its supremum, supµY (Wss). As this occurs, the increment to its concentration (∆log(Wss)) after an
additional perturbation that decreases the µY value even further (i.e. ∆log(µY ) < 0) is constrained by the Wss

proximity to its limit. With some abuse of notation, we use the symbol ≈ to denote the situation in which this limit
is taken as Wss approaches its upper bound. As a result, in this regime, Wss ≈ supµY (Wss) and ∆log(Wss) ≈ 0.
Now, using Eq. 13 and Consequence 1,

CoRaµY ∈Θ(µY ) =
∆log(Yss)

∆log(Yss,NF)
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=
∆log(µY) + ∆log(Wss)

∆log(µY)

≈ ∆log(µY)

∆log(µY)
(18)

≈ 1 (19)

Proposition 4. For the system described in Eqs. 3-6, and within the range of µY for which the feedback is effective
(i.e. |∆log(Yss)| < |∆log(µY )| for all µY values within the range), CoRaµY ∈Θ(µY )→ 0.5 as µY increases, provided
that (γ + γU ) > 0.

Proof. By Consequence 2 above, in a range of µY values with feedback control, Wss value decreases as the µY
value (before a perturbation is applied) increases. As WT,ss = Wss + Css is lower bounded (Eq. 17), and WT,ss is
minimal when Css approaches WT,ss, Css must have an lower limit as well (i.e. its infimum, infµY (Css) ≥ µW

γ+γW+η−
),

and Css → infµY (Css) as µY increases.
Let’s define total U as the sum of free molecule U and the complex molecule C, i.e. UT = U + C. Then, the

equation of change of UT corresponds to the sum of Eq. 3 and Eq. 5:

d

dt
UT =

d

dt
U +

d

dt
C

= µUY − (γ + γU )(U + C)− η−C (20)

= µUY − (γ + γU )UT − η−C (21)

Let’s assume that µY is large enough such that Css approaches its lower bound, which is given by c = infµY (Css).
With some abuse of notation, we use the symbol ≈ to denote the situation in which this limit is taken as Css
approaches its lower bound.

UT,ss ≈ µUYss − η−c
γ + γU

(22)

and

Uss ≈ UT,ss − c

=
µUYss − (η− + γ + γU )c

γ + γU
(23)

Solving Eq. 5 in steady state, and substituting Css, Uss,

0 = η+UssWss − (γ + η0 + η− + γU + γW )Css

Wss =
(γ + η0 + η− + γU + γW

η+

)(Css
Uss

)
= Kd

(Css
Uss

)
≈ Kd

( (γ + γU )c

µUYss − (η− + γ + γU )c

)
(24)

with Kd := γ+η0+η−+γU+γW
η+

. Then, solving Eq. 6 in steady state, and substituting Wss,

0 = µYWss − (γ + γY )Yss

Yss =
µY

γ + γY
Wss

Yss ≈
( µY
γ + γY

)( Kd(γ + γU )c

µUYss − (η− + γ + γU )c

)
0 ≈ Y 2

ss −
( (η− + γ + γU )c

µU

)
Yss −

(µYKd(γ + γU )c

µU (γ + γY )

)
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Yss ≈
(1

2

)(( (η− + γ + γU )c

µU

)
+

√( (η− + γ + γU )c

µU

)2

+ 4
(µYKd(γ + γU )c

µU (γ + γY )

))
=

( (η− + γ + γU )c

2µU

)(
1 +

√
1 + 4

( µY µUKd(γ + γU )

(γ + γY )(η− + γ + γU )2c

))
=

( (η− + γ + γU )c

2µU

)(
1 +

√
1 + a · µY

)
(25)

with a := 4
(

µUKd(γ+γU )
(γ+γY )(η−+γ+γU )2c

)
. As a result, the change of the steady-state output Yss after a small perturbation on

µY (µY → µ′Y , used to compute CoRa),

∆log(Yss) = log
(( (η−+γ+γU )c

2µU

)(
1 +

√
1 + a · µ′Y

)( (η−+γ+γU )c
2µU

)(
1 +
√

1 + a · µY
) )

= log
((1 +

√
1 + a · µ′Y

)(
1 +
√

1 + a · µY
) ) (26)

On the other hand, given Consequence 1, the no-feedback system has ∆log(Yss,NF ) = ∆log(µY ) = log(
µ′Y
µY

), and the
associated CoRa value is given by:

CoRa =
log
(

1+
√

1+a·µ′Y
1+
√

1+a·µY

)
log(

µ′Y
µY

)
(27)

As µY increases, with (a · µY )� 1, such that (1 +
√

1 + a · µY ) ≈ √a · µY , then

CoRa ≈
log
(

(a·µ′Y )0.5

(a·µY )0.5

)
log(

µ′Y
µY

)

≈
0.5 log(

µ′Y
µY

)

log(
µ′Y
µY

)

≈ 0.5 (28)

S2.1.2 ATF control limits with active complex

In this section, we demonstate that for the system described in Eqs. 3-5,7, if (γ + γW ) > 0, as Y -synthesis rate (µY )
value decreases, CoRaµY ∈Θ(µY )→ 1. Similarly, as µY increases, CoRa saturates with CoRaµY ∈Θ(µY )→ 1,
regardless of γ, γW , γU = 0. These analytically argued results are corroborated by computational demonstrations in
Figure S4B.

Proposition 5. For the system described on Eqs. 3-5,7, as µY → µ′Y , ∆log(Yss) = ∆log(µY ) + ∆log(WT,ss). Here,
for brevity, we denote Yss|Θ,µY by Yss, and Yss|Θ,µ′Y by Y ′ss, and similarly for WT,ss. Therefore
∆log(Yss) = log(Y ′ss)− log(Yss), ∆log(WT,ss) = log(W ′T,ss)− log(WT,ss), and ∆log(µY ) = log(µ′Y )− log(µY ).

Proof. Given Eq. 7, the output steady state for the system is

Yss =
( µY
γ + γY

)
(Wss + Css)

=
( µY
γ + γY

)
WT,ss (29)

After a perturbation µY → µ′Y , the new output steady state can be written as

Y ′ss =
( µ′Y
γ + γY

)
W ′T,ss (30)
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Then, the effect of the perturbation on the system can be quantified as

∆log(Yss) = log(Y ′ss)− log(Yss) = log
(Y ′ss
Yss

)
= log

(( µ′Y
γ+γY

)
W ′T,ss(

µY
γ+γY

)
WT,ss

)
= log

((µ′Y
µY

)(W ′T,ss
WT,ss

))
= ∆log(µY ) + ∆log(WT,ss) (31)

where the effect of the feedback is introduced by the ∆log(WT,ss) component.

Consequence 3. In the absence of feedback (i.e. when U and W do not depend on Y ), WT,ss should remain
constant after a µY -perturbation, i.e. ∆log(WT,ss) = 0. As a result, the effect of the perturbation on the system is
simply equal to the size of the perturbation, i.e. ∆log(Yss) = ∆log(µY ).

Consequence 4. By definition, a system has feedback control if the presence of feedback reduces the effect of the
perturbation over the output change, i.e. |∆log(Yss)| < |∆log(µY )|. Then, in order to have feedback control,
∆log(WT,ss) < 0 if ∆log(µY ) > 0 (and vice versa). It follows that in range of µY values with effective feedback
control, WT,ss must decrease monotonically as µY value increases.

Proposition 6. For the system described in Eqs. 3-5,7, if (γ + γW ) > 0, the total W steady state
(WT,ss = Wss +Css) has an upper limit and lower limit, independent of µY . Additionally, WT,ss approaches its upper
limit when Wss ≈WT,ss, and its lower limit when Css ≈WT,ss.

Proof. Let’s define total W as the sum of free molecule W and the complex molecule C, i.e. WT = W + C. Then,
the equation of change of WT corresponds to the sum of Eq. 4 and Eq. 5:

d

dt
WT =

d

dt
W +

d

dt
C

= µW − (γ + γW )(W + C)− η−C (32)

Without loss of generality, we represent C as a fraction of the total W , αWT with α ∈ [0, 1]:

d

dt
WT = µW − (γ + γW + αη−)WT (33)

Then, at steady state:

WT,ss =
µW

γ + γW + αη−
(34)

Given that all involved parameters are non-negative, and α ∈ [0, 1]:

µW
γ + γW + η−

≤ µW
γ+γW+αη−

≤ µW
γ + γW

µW
γ + γW + η−

≤ WT,ss ≤ µW
γ + γW

(35)

Notice that the upper limit exists only if (γ + γW ) > 0. Moreover, it is clear that WT,ss approaches its upper limit
when α→ 0, i.e. WT,ss ≈Wss, while WT,ss approaches its lower limit when α→ 1, i.e. WT,ss ≈ Css.

Proposition 7. For the system described in Eqs. 3-5,7 and within the range of µY for which the feedback is
effective (i.e. |∆log(Yss)| < |∆log(µY )|), CoRaµY ∈Θ(µY )→ 1 as µY decreases, provided that (γ + γW ) > 0.

Proof. By Consequence 4, in the range of effective feedback control, WT,ss value increases as the µY value (before
a perturbation is applied) decreases. Therefore, as the µY value decreases, WT,ss approaches its limit, µW

γ+γW
(Eq. 35).

Therefore, the potential increment to its concentration (∆log(WT,ss)) after a perturbation that decreases µY value
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even further (i.e. ∆log(µY ) < 0) is constrained by the WT,ss proximity to the limit. With some abuse of notation, we
use the symbol ≈ to denote the situation in which the limit is taken as Wss approaches its upper bound. In this
regime, WT,ss ≈ µW

γ+γW
and ∆log(Wss) ≈ 0. Using Eq. 31 and Consequence 3,

CoRaµY ∈Θ(µY ) =
∆log(Yss)

∆log(Yss,NF)

=
∆log(µY) + ∆log(WT,ss)

∆log(µY)

≈ ∆log(µY)

∆log(µY)

≈ 1 (36)

Proposition 8. For the system described in Eqs. 3-5,7, and within a range in which the feedback is effective (i.e.
|∆log(Yss)| < |∆log(µY )| for all µY values within the range), CoRaµY ∈Θ(µY )→ 1 as µY increases.

Proof. By Consequence 4 above, in a range of µY values with effective feedback control, WT,ss value decreases as
the µY value (before a perturbation is applied) increases. Therefore, as the µY value increases, WT,ss approaches its
limit, µW

γ+γW+η−
(Eq. 35). Then the potential reduction on its concentration (∆log(WT,ss)) after a perturbation that

increases µY value even further (i.e. ∆log(µY ) > 0) is constrained by the WT,ss proximity to the limit. Then as the
µY value (before a perturbation is applied) increases, such that WT,ss ≈ µW

γ+γW+η−
and ∆log(Wss) ≈ 0 (with the

same abuse of notation highlighted above as to limits), using Eq. 31 and Consequence 3,

CoRaµY ∈Θ(µY ) =
∆log(Yss)

∆log(Yss,NF)

=
∆log(µY) + ∆log(WT,ss)

∆log(µY)

≈ ∆log(µY)

∆log(µY)

≈ 1 (37)

Notice this limit exists even if W and U are lost only through their mutual annihilation (i.e. γ, γW , γU = 0), as the
active degradation is not spontaneous (i.e. 0 < η− <∞).

S2.2 Limits and the controlled system

It must be emphasized that the control limits described above depend directly on the specific subsystem being
controlled, and that analytical intuitive expressions might not always be feasible. CoRa has the advantage of not
having to rely on this knowledge. In this paper, we also analyze three different controlled subsystems with the
antithetic feedback control (ATF), for which no clear analytical derivations are possible :

1. One-step subsystem:

d

dt
Y = µYW − (γ + γY )Y (38)

2. Double-negative subsystem:

d

dt
Y0 = µ0W − (γ + γY )Y0

d

dt
Y1 = µ1

K1

Y0 +K1
− (γ + γY )Y1

d

dt
Y = µY

KD

Y1 +KD
− (γ + γY )Y (39)
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3. Subsystem with positive feedback:

d

dt
Y0 = µ0W − (γ + γY )Y0

d

dt
Y1 = µ1Y0 + µP

Y1

Y1 +KP
− (γ + γY )Y1

d

dt
Y = µY Y1 − (γ + γY )Y (40)

In all cases, W induces the synthesis of the subsystem, and Y is the output of interest, as well as the feedback input
(Eqs. 3-5; Fig. S2). Choosing Y as the system’s output, the corresponding locally analogous system without feedback
maintains the same ODE equations except for the input to the control subsystem (U synthesis induction for the ATF
examples), where Y is substituted by a new molecule Y∗, which is constitutively expressed such that the steady state
output of the locally analogous system without feedback Yss,NF is equal to the steady state output of the feedback
system Yss (i.e. Y∗ degradation rate γY ∗ = γY , and Y∗ synthesis rate, µY ∗ = µYWss, µY ∗ = µY

KD
Y1,ss+KD

, or

µY ∗ = µY Y1,ss, depending on the subsystem being considered).
Even with these simple examples, we observed that depending on the subsystem being controlled, the exact same

control motif has not only different performance, but qualitatively different responses to the tuning of the control
parameters (Fig. S2).

S3 Understanding effect of saturation on buffering + negative
feedback control strategy

System proposed in Hancock et al. (2017) Hancock et al. (2017) explored a simple model proposed to
display perfect adaptation. This system consisted of only two species, one working as a buffer of the other while
inhibiting its own synthesis (i.e. negative feedback). The equations of this control strategy with a the simple
controlled subsystem used in this paper are:

d

dt
Y = (µY − kY )− βY + βPUP − γY Y (41)

d

dt
UP = βY − βPUP − γUPUP (42)

where µY is the maximum synthesis rate of Y , β and βP are inactivation and activation rates respectively, UP
represents the inactive form of Y , γY and γUP are the degradation rates of Y and UP , respectively, and k is
inhibition rate of Y over its own synthesis.

At steady state,

UP,ss =
βYss

βP + γUP
(43)

Yss =
µY

k + β − β βP
βP+γUP

+ γY
(44)

Then, assuming βP � γUP , Yss is controlled with a reference value µY
k+γY

.

We consider a modified implementation of this buffering + negative feedback (BNF v1) control motif where the
feedback has an additional intermediate step:

d

dt
Y = µY U − (γ + γY )Y (45)

d

dt
U = f(Y )− (γ + γU )U − βU + βPUP (46)

d

dt
UP = −(γ + γUP )UP + βU − βPUP (47)
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The steady state solution for U and UP is:

Uss = Yss

(γ + γY
µY

)
(48)

UP,ss =
βUss

γ + γUP + βP
(49)

For Y , in the case where f(Y ) = µU − kY is a linear function:

Yss = µU
µY

µY k + (γ + γU + β)(γ + γY )− β(γ + γY ) βP
γ+γUP +βP

(50)

If we assume that γ + γUP ≈ 0, then Eq. 50 is reduced to:

Yss = µU
µY

µY k + (γ + γU )(γ + γY )
(51)

The system has perfect adaptation only if µY k � (γ + γU )(γ + γY ), in which case the reference value is µU
k .

In the case where f(Y ) = µU
KD

KD+Y is a Michaelis-Menten function, steady state solution for Y is:

Yss =

−KD +

√
K2
D + 4KD

(
µY
γ+γY

)(
µU
γ+γU

)(
γ+γU+βP

β+γ+γU+βP

)
2

=
(KD

2

)
(−1 +

√
1 + a · µY ) (52)

with a :=
(

4
KD

)(
1

γ+γY

)(
µU
γ+γU

)(
γ+γU+βP

β+γ+γU+βP

)
. This steady state expression already suggests that perturbations to

µY cannot be perfectly controlled anymore. Moreover, we show below that regardless of the parameter values, BNF
v1 with a Michaelis-Menten function describing the negative regulation has CoRaθ∈Θ(µY ) > 0.5.

The corresponding locally analogous system without feedback maintains the same ODE equations (Eq. 45 and
Eq. 47), with the exception of dU

dt ,

d

dt
U = f(Y∗)− (γ + γU )U − βU + βPUP (53)

where U synthesis rate now depends on a new molecule Y∗ with dynamics

d

dt
Y∗ = µY ∗ − (γ + γY ∗)Y∗ (54)

such that, for each parameter set Θ, Y∗ is constitutively expressed with synthesis µY ∗ equal to Y synthesis rate in the
pre-perturbation steady state solution (i.e. µY ∗ = µY U), and degradation rate γY ∗ = γY . Then, with
f(Y∗) = µY

KD
KD+Y∗

, the output steady state solution Yss,NF for this locally analogous system without feedback is:

Yss,NF =
( KD

( µY ∗
γ+γY ∗

) +KD

)( µY
γ + γY

)( µU
γ + γU

)( γ + γU + βP
β + γ + γU + βP

)
=

( KD(γ + γY ∗)

µY ∗ +KD(γ + γY ∗)

)(KD

4

)
· a · µY (55)

Control limits Using Eq. 52 and Eq. 55, the CoRa value for a small perturbation on µY (µY → µ′Y ) is calculated
as,

CoRaµY ∈Θ(µY ) =
log
(

(
KD

2 )(−1+
√

1+a·µ′Y )

(
KD

2 )(−1+
√

1+a·µY )

)
log
(

(
KD(γ+γY ∗)

µY ∗+KD(γ+γY ∗)
)(
KD

4 )a·µ′Y
(

KD(γ+γY ∗)
µY ∗+KD(γ+γY ∗)

)(
KD

4 )a·µY

)

=
log
(
−1+
√

1+a·µ′Y
−1+

√
1+a·µY

)
log(

µ′Y
µY

)
(56)
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First, we show that CoRaµY ∈Θ(µY ) decreases monotonically as the µY value (before the perturbation) increases
(i.e. dCoRaµY ∈Θ(µY )/dµY < 0). In order to evaluate the derivative of CoRa, we first need to derive the continuous

form of the CoRa function (CoRaC), which corresponds to CoRa evaluated in the limit as the perturbation size
(∆µY , with µ′Y = µY + ∆µY ) approaches zero,

CoRaCµY ∈Θ(µY ) = lim∆µY→0(CoRaµY ∈Θ(µY ))

=
log
(
−1+
√

1+a·(µY +∆µY )

−1+
√

1+a·µY

)
log( (µY +∆µY )

µY
)

|lim∆µY→0

=
log(−1 +

√
1 + a · (µY + ∆µY ))− log(−1 +

√
1 + a · µY )

log((µY + ∆µY ))− log(µY )
|lim∆µY→0

=

log(−1+
√

1+a·(µY +∆µY ))−log(−1+
√

1+a·µY )

∆µY
log((µY +∆µY ))−log(µY )

∆µY

|lim∆µY→0

=

d
dµY

log(−1 +
√

1 + a · µY )
d

dµY
log(µY )

=
1

2

(
1 +

1√
1 + a · µY

)
(57)

Then,

d

dµY
CoRaCµY ∈Θ(µY ) =

d

dµY

(1

2

(
1 +

1√
1 + a · µY

)
= − a

4(1 + a · µY )
3
2

< 0 (58)

As all parameters are positive (i.e. a > 0 and µY > 0), this derivative is always negative.
From Eq. 56, it is easy to see that as the µY value (before the perturbation) increases, with (a · µY )� 1, such

that (−1 +
√

1 + a · µY ) ≈ √a · µY , then

CoRaµY ∈Θ(µY ) ≈
log
(

(a·µ′Y )0.5

(a·µY )0.5

)
log(

µ′Y
µY

)

≈
0.5 log(

µ′Y
µY

)

log(
µ′Y
µY

)

≈ 0.5 (59)

It follows that regardless of the parameter values, BNF v1 with a Michaelis-Menten function describing the
negative synthesis regulation has CoRaµY ∈Θ(µY ) > 0.5.

S4 Comparing Feedback Control Morifs with CoRa

For all systems below, Y represents the system output.

S4.1 Antithetic Feedback

We consider a simple version of the Antithetic Feedback motif (ATF) proposed by Briat et al. [2], where Y is being
produced at a rate that depends on the concentration of W , while U synthesis is induced by Y , which then binds W ,
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forming a transitory complex C, which eventually leads to the mutual degradation of U and W :

d

dt
U = µUY − (γ + γU )U − η+UW + (η0 + γW )C (60)

d

dt
W = µW − (γ + γW )W − η+UW + (η0 + γU )C (61)

d

dt
C = η+UW − (γ + η0 + η− + γU + γW )C (62)

For Y dynamics, two alternative scenarios can be easily foreseen: W can be either inactivated as a transcription
factor once it binds U (ATF v1; Fig. 3A),

d

dt
Y = µYW − (γ + γY )Y (63)

or W retains its transcription factor activity until degraded (ATF v2; Fig. 3D),

d

dt
Y = µY (W + C)− (γ + γY )Y (64)

Here all species are subject to loss by dilution (γ), in addition of their own individual degradation rates (γ�), µ�

represents the synthesis rate for each molecule (either constitutive, µW , or dependent of the associated transcription
factor, µU and µY ), and η− is the co-degradation rate of U,W in the complex form C; η+ is the binding rate of U
and W (forming the complex C); and η0 is the spontaneous unbinding rate of these two molecules (dissociating the
complex C).

The corresponding locally analogous system without feedback maintains the same ODE equations (Eq. 61-62, and
either Eq. 63 or Eq. 64), with the exception of dU

dt ,

d

dt
U = µUY∗ − (γ + γU )U − η+UW + (η0 + γW )C (65)

where U synthesis rate now depends on a new molecule Y∗ with dynamics

d

dt
Y∗ = µY∗ − (γ + γY∗)Y∗ (66)

For each parameter set Θ, Y∗ is constitutively expressed with synthesis µY ∗ equal to Y synthesis rate in the
pre-perturbation steady state solution (i.e. either µY ∗ = µYWss or µY ∗ = µY (Wss +Css), depending on the feedback
system being considered), and degradation rate γY ∗ = γY .

S4.2 Feedback by Active Degradation

We consider a simple version of the Feedback by Active Degradation motif (FAD; [6, 9]), where Y is being produced
at a rate that depends on the concentration of W , while U synthesis is induced by Y . Y then binds W , forming a
transitory complex C, which eventually leads to the degradation of only W while freeing U :

d

dt
U = µUY − (γ + γU )U − η+UW + (η0 + γW + η−)C (67)

d

dt
W = µW − (γ + γW )W − η+UW + (η0 + γU )C (68)

d

dt
C = η+UW − (γ + η0 + η− + γU + γW )C (69)

For Y dynamics, two alternative scenarios can be easily foreseen: W can be either inactivated as a transcription
factor once it binds U (FAD v1; Fig. 3B),

d

dt
Y = µYW − (γ + γY )Y (70)
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or W retains its transcription factor activity until degraded (FAD v2; Fig. 3E),

d

dt
Y = µY (W + C)− (γ + γY )Y (71)

Here all species are subject to loss by dilution (γ), in addition of their own individual degradation rates (γ�), µ�

represents the synthesis rate for each molecule (either constitutive, µW , or dependent of the associated transcription
factor, µU and µY ), and η− is the active degradation rate of W in the complex form C; η+ is the binding rate of U
and W (forming the complex C); and η0 is the spontaneous unbinding rate of these two molecules (dissociating the
complex C).

The corresponding locally analogous system without feedback maintains the same ODE equations (Eq. 68-69, and
either Eq. 70 or Eq. 71), with the exception of dU

dt ,

d

dt
U = µUY∗ − (γ + γU )U − η+UW + (η0 + γW + η−)C (72)

where U synthesis rate now depends on a new molecule Y∗ with dynamics

d

dt
Y∗ = µY∗ − (γ + γY∗)Y∗ (73)

For each parameter set Θ, Y∗ is constitutively expressed with synthesis µY ∗ equal to Y synthesis rate in the
pre-perturbation steady state solution (i.e. either µY ∗ = µYWss or µY ∗ = µY (Wss +Css), depending on the feedback
system being considered), and degradation rate γY ∗ = γY .

S4.3 Feedback by Active Degradation + Positive Feedback with inactive complex

We consider the FAD motif with the addition of a positive feedback (FDP; [3, 9]), i.e. W induces its own synthesis.
Once again, two alternative scenarios can be easily foreseen: W can be either inactivated as a transcription factor
once it binds U (FDP v1; Fig. 3C),

d

dt
U = µUY − (γ + γU )U − η+UW + (η0 + γW + η−)C (74)

d

dt
W = µW

( W

W +KD

)
− (γ + γW )W − η+UW + (η0 + γU )C (75)

d

dt
C = η+UW − (γ + η0 + η− + γU + γW )C (76)

d

dt
Y = µYW − (γ + γY )Y (77)

or W retains its transcription factor activity until degraded (FDP v2; Fig. 3F),

d

dt
U = µUY − (γ + γU )U − η+UW + (η0 + γW + η−)C (78)

d

dt
W = µW

( (W + C)

(W + C) +KD

)
− (γ + γW )W − η+UW + (η0 + γU )C (79)

d

dt
C = η+UW − (γ + η0 + η− + γU + γW )C (80)

d

dt
Y = µY (W + C)− (γ + γY )Y (81)

Here all species are subject to loss by dilution (γ), in addition of their own individual degradation rates (γ�), µ�

represents the synthesis rate for each molecule, KD is the Michaelis-Menten constant for W auto-regulation, and η−
is the active degradation rate of W in the complex form C; η+ is the binding rate of U and W (forming the complex
C); and η0 is the spontaneous unbinding rate of these two molecules (dissociating the complex C).
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The corresponding locally analogous system without feedback maintains the same ODE equations (either
Eq. 75-77, or Eq. 79-81), with the exception of dU

dt ,

d

dt
U = µUY∗ − (γ + γU )U − η+UW + (η0 + γW + η−)C (82)

where U synthesis rate now depends on a new molecule Y∗ with dynamics

d

dt
Y∗ = µY∗ − (γ + γY∗)Y∗ (83)

For each parameter set Θ, Y∗ is constitutively expressed with synthesis µY ∗ equal to Y synthesis rate in the
pre-perturbation steady state solution (i.e. either µY ∗ = µYWss or µY ∗ = µY (Wss +Css), depending on the feedback
system being considered), and degradation rate γY ∗ = γY .

S4.4 Buffering + Negative Feedback

We consider a motif with negative feedback and a buffering loop (BNF v1 & v2; Fig. 3G-H), similar to the one
proposed in Hancock et al. [4], where Y represses the synthesis of U , and U transitions to an alternative state UP
and vice versa:

d

dt
U = µU

( KD

Y +KD

)
− (γ + γU )U − βU + βPUP (84)

d

dt
UP = −(γ + γU )UP + βU − βPUP (85)

closing the feedback with either U inducing Y synthesis (BNF v1; Fig. 3G),

d

dt
Y = µY U − (γ + γY )Y (86)

or UP inducing Y synthesis (BNF v2; Fig. 3H):

d

dt
Y = µY UP − (γ + γY )Y (87)

Here all species are subject to loss by dilution (γ), in addition of their own individual degradation rates (γY for Y ,
and γU for both U and UP ), µU is the maximum synthesis rate of U (in absence of Y ), µY is the synthesis rate of Y
(depending either on U , Eq. 86, or UP , Eq. 87), and β, βP are the transition rates from U to UP , and viceversa.

The corresponding locally analogous system without feedback maintains the same ODE equations (Eq. 85, and
either Eq. 86 or Eq. 87), with the exception of dU

dt ,

d

dt
U = µU

( KD

Y∗ +KD

)
− (γ + γU )U − βU + βPUP (88)

where U synthesis rate now depends on a new molecule Y∗ with dynamics

d

dt
Y∗ = µY∗ − (γ + γY∗)Y∗ (89)

For each parameter set Θ, Y∗ is constitutively expressed with synthesis µY ∗ equal to Y synthesis rate in the
pre-perturbation steady state solution (i.e. either (i.e. either µY ∗ = µY Uss or µY ∗ = µY UP,ss, depending on the
feedback system being considered), and degradation rate γY ∗ = γY .

23/27



S4.5 Feedback + Feedforward Loop

We consider a motif with negative feedback and a coherent feed-forward loop (FFL; Fig. 3H), similar to the one
proposed in Harris et al. [5], where Y represses the synthesis of U , and U induces the synthesis of both Y and W ,
which in turns also induces Y synthesis:

d

dt
U = µU

( KD

Y +KD

)
− (γ + γU )U (90)

d

dt
W = µWU − (γ + γW )W (91)

d

dt
Y = µY (U +W )− (γ + γY )Y (92)

Here all species are subject to loss by dilution (γ), in addition of their own individual degradation rates (γ�), and µ�

represents the synthesis rate for each molecule.
The corresponding locally analogous system without feedback maintains the same ODE equations (Eq. 91-92),

with the exception of dU
dt ,

d

dt
U = µU

( KD

Y∗ +KD

)
− (γ + γU )U (93)

where U synthesis rate now depends on a new molecule Y∗ with dynamics

d

dt
Y∗ = µY∗ − (γ + γY∗)Y∗ (94)

For each parameter set Θ, Y∗ is constitutively expressed with synthesis µY ∗ equal to Y synthesis rate in the
pre-perturbation steady state solution (i.e. µY ∗ = µY (Uss +Wss)), and degradation rate γY ∗ = γY .

S4.6 Brink Motif Feedback

We consider a simple version of the Brink motif (BMF) proposed by Samaniego & Franco [8], where A and I bind
and annihilate each other (by creating the complex C), A induces the activation of U (UP to U), while I induces its
inactivation (U to UP ), and U induces the synthesis of Y :

d

dt
C = −γC + η+AI − η0C + βAAUP (95)

d

dt
U = µU − γU + βAAUP − βIIU (96)

d

dt
UP = −γUP − βAAUP + βIIU (97)

d

dt
Y = µY U − (γ + γY )Y (98)

With Y either inducing the synthesis of I (BMF v1; Fig. 3I),

d

dt
A = µA − γA− η+AI + η0C − βAAUP (99)

d

dt
I = µIY − γB − η+AI + η0C − βIIU (100)

or Y repressing the synthesis of A (BMF v2; Fig. 3J),

d

dt
A = µA

( KD

Y +KD

)
− γA− η+AI + η0C − βAAUP (101)

d

dt
I = µI − γB − η+AI + η0C − βIIU (102)
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Here all species are subject to loss by dilution (γ), µ� represents the synthesis rate for each molecule (except UP ,
which is only created by the inactivation of U), η+ is the binding rate of A and I (forming the complex C), η0 is the
spontaneous unbinding rate of these two molecules (dissociating the complex C); and βA, βI are the activation and
inactivation rates of U , respectively. Finally, KD is the Michaelis-Menten constant for the transcriptional repression
by Y on Eq. 102.

The corresponding locally analogous system without feedback maintains the same ODE equations (Eq. 95-97, and
either Eq. 99 or Eq. 102), with the exception of dI

dt for BMF v1,

d

dt
I = µIY∗ − γB − η+AI + η0C − βIIU (103)

or dA
dt for BMF v2,

d

dt
A = µA

( KD

Y∗ +KD

)
− γA− η+AI + η0C − βAAUP (104)

where I, A synthesis rate, respectively, now depends on a new molecule Y∗ with dynamics

d

dt
Y∗ = µY∗ − (γ + γY∗)Y∗ (105)

such that Y∗ is constitutively expressed with synthesis µY ∗ equal to Y synthesis rate in the steady state solution for
each parameter set Θ (i.e. either µY ∗ = µY Uss), and degradation rate γY ∗ = γY , before the perturbation.

S5 Using CoRa to design biomolecular feedback control mechanisms

Below, we present the details of the optimization of the CoRa function over control parameters. For this, we
implemented a simple algorithm with two optimization phases: choosing for parameter values that (1) reduce the
CoRa value up until min(CoRa) ≤ ε (with ε being a threshold picked by the user), and then (2) expand the range of
parameter set values θ (e.g. range of µY values) with min(CoRa) ≤ ε. Multiple parameter sets might result in
equivalent efficient control for a given feedback control system. This can be explored computationally by running the
optimization algorithm for multiple initial conditions and/or random number chains. Iterations of the optimization
process allow to determine the region of the parameter space and relationship between parameters associated to the
optimal performance for the case of interest.

S5.1 Optimizing feedback control designs

The goal is to maximize the range of values of a specific parameter θ ∈ Θ where CoRaθ∈Θ(ρ) ≤ ε. For this, we
consider two phases of the optimization: first minimizing the min(CoRaθ∈Θ(ρ)) up until it is less or equal ε; then
maximizing the magnitude of |CoRaθ∈Θ(ρ) ≤ ε| in the explored range (in the logarithmic scale).

Error function, χ2

Minimizing min(CoRaθ∈Θ(ρ))

We define our error function (sum of square errors) by assuming the optimal point D = 0, and considering the
expected variance of uniform distribution ∼ U [0, 1] (σ2 = 0.083). Then our error function in the initial phase of the
optimization is:

χ2 =
(0−min(CoRaθ∈Θ(ρ)))2

2σ2
(106)

=
min(CoRaθ∈Θ(ρ))2

2σ2
(107)
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Maximizing |CoRaθ∈Θ(ρ) ≤ ε|

We assume the optimal point D = 1 for all values of θ ∈ Θ in the range of interest, then∫
Ddθ = θ| = θmax − θmin = r (108)

And for each data point θi, yi is 1 if CoRaθi∈Θ(ρ) ≤ ε, 0 otherwise. Then (Di − yi)2 = 0 for the range where
CoRaθ∈Θ(ρ) ≤ ε, 1 otherwise. Finally,∫

(Di − yi)2 = r − |CoRaθi∈Θ(ρ) ≤ ε| (109)

And the range of interest is maximized as this value is minimized. Then, our error function in this phase of the
optimization is:

χ2 =
r − |CoRaθi∈Θ(ρ) ≤ ε|

2σ2
(110)

We initially tried using the variance of a uniform function ∼ U [0, r] (σ2 = 0.083r2) for the error function, but it
resulted in very noisy simulations. So we opted for the same variance than when minimizing min(CoRaθ∈Θ(ρ))
(σ2 = 0.083).

Metropolis Random Walk algorithm

For each phase, an error function is defined, and a Metropolis Random Walk algorithm implemented as follows:

1. Choose some initial parameters Θ1 and calculate the corresponding likelihood.

2. Iterate over t = {1, 2, ..., tMAX} as follows:

(a) Draw a random proposal φ ∼ Θ(t) × 10N||Θ||(0,Σ) where N||Θ||(0,Σ) is a Multivariate Normal distribution
with the same dimension as Θ(t), mean zero and covariance matrix Σ = 0.1.

(b) We construct a likelihood function using a Gaussian function:

P (D|Θ) = exp(−χ2) (111)

where Θ is the set of parameter to be optimized, D is the optimal data, and χ2 is the error function
(which depends on the optimization phase). Note the likelihood is maximal when the error is minimal.
Then we calculate the likelihood ratio:

L∗
L(t)

=
P (D|φ)

P (D|Θ(t))
= exp(−χ2

∗ + χ2
(t)) (112)

Accept the proposed φ if the ratio is larger than a random number ∼ U [0, 1]. The proposed value is always
accepted if the error is smaller (i.e. it’s better).

(c) Update parameters Θ(t+1) ← φ with probability min(1, L∗L(t)
); otherwise, Θ(t+1) ← Θ(t).
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