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Mathematical models continue to be essential for deepening

our understanding of biology. On one extreme, simple or small-

scale models help delineate general biological principles.

However, the parsimony of detail in these models as well as

their assumption of modularity and insulation make them

inaccurate for describing quantitative features. On the other

extreme, large-scale and detailed models can quantitatively

recapitulate a phenotype of interest, but have to rely on many

unknown parameters, making them often difficult to parse

mechanistically and to use for extracting general principles. We

discuss some examples of a new approach — complexity-

aware simple modeling — that can bridge the gap between the

small-scale and large-scale approaches.
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Introduction
Mathematical models have long been the crutch for our

intuition in many fields of science. Models have also rapidly

become accepted tools in the biological sciences, used to

organize data and knowledge, understand how biological

phenomena arise from the collective action of components

[1�] and predict emergent organizational properties [2,3].

In general, the most useful model for a particular process

would depend on the specific question at hand as well as

the information available (previous knowledge and attain-

able experimental data) [4,5�,6]. As a result, a single model

is rarely appropriate for all possible instances of a problem

[7]. This said, modelers of biology have long argued (and

continue to do so) about the most useful approach, creat-

ing some tension between the supporters of large-scale

and small-scale models [8]. Detailed or large-scale models
www.sciencedirect.com 
attempt to incorporate most or all the available informa-

tion about a system that is being modeled, resulting in

many components and interactions explicitly stated in the

resulting model. These models are criticized for being

poorly parametrized and not easily amenable to abstrac-

tion and general insight. On the other hand, simple or

small-scale models actively seek to discern the minimal

essential components and interactions required to explain

a particular behavior. As a result, the quantitative predic-

tive power of small-scale models is often questioned. All

models, by definition, fail to incorporate every mechanistic

detail of a biological system [9]. Simply stated, since

models are necessarily approximations of reality, even

the most elaborate model contains a set of assumptions,

and any conclusion derived from this model would be

dependent on the validity of these assumptions.

While keeping this in mind, we discuss some examples of

‘small-scale’ models and ‘large-scale’ models. We then

introduce the potential hybridization of these two

through an approach we call ‘complexity-aware simple

modeling’. We discuss two recent examples of this prom-

ising approach.

Small-scale models: the power of simplicity
The motivation behind small-scale models is that the

most parsimonious set of components and their interac-

tions that can explain a phenotype also provide the most

power for unraveling its underlying requirements. These

models provide a major benefit: by using a small number

of components, the number of unknown parameters is

minimal and their associated assumptions are tractable.

This greatly facilitates interpretation and provides an

opportunity for vetting the generality of conclusions.

As a result, small-scale models are often associated with

the quest for uncovering principles.

In support of this notion, many concepts that are deeply

embedded in our current knowledge of biological circuits

result from small-scale models (see [10]). These include

prominent principles such as the need for positive feed-

back for multistability [11], and negative feedback and

time delays to produce oscillations [12]. Such simple but

powerful guiding principles have been crucial for the

study of many biological systems, ranging from circadian

rhythms [13–15] to cell cycle regulation [16–18], and have

led to profound insights into these complex systems.

While many small-scale models are derived with a biologi-

cal system in mind, some are constructed to probe the

general requirements of a broad biological property. For

example, small-scale models have been used to pinpoint
Current Opinion in Microbiology 2018, 45:47–52
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specific structural attributes of the biochemical networks

that produce ‘absolute concentration robustness’ (ACR). An

ACR network is one in which one of the molecular species

maintains a constant concentration, irrespective of fluctua-

tions of other circuit components. A simple model of two

molecular species A and B, present at a total concentrate A
+ B = u, interconverting along the two simple reactions A
+ B ! 2B and B ! A (at rates a and b respectively) shows

ACR in that the concentration of A is constant (at b/a)
irrespective of total concentration u. This example moti-

vated the development of a broad theory for defining large

classes of ACR networks [19,20�] that can produce this

property irrespective of biochemical parameter values.

Often however, the most meaningful understanding

derives from a convergence of the general investigations

of ‘principles’ with the focused investigations of a con-

crete biological network. Unraveling how frog oocytes

implement an irreversible differentiation switch was

accomplished through a keen interest in this biological

question as well as exploration of the properties of ultra-

sensitivity and positive feedback using simple models

[21–23]. Another example is that of perfect adaptation in

which a functional quantity of a biological circuit can

maintain a steady-state value that is constant despite a

perturbing input. A multi-decade interest in understand-

ing how bacteria implement perfect adaptation in che-

motaxis [24–29] led to a compelling formulation of this

problem, with renewed interest generated by the identi-

fication of perfect adaptation in other systems [30–32].

Here again, insights gained from simple models of bio-

logical systems that feature perfect adaptation (see [33])

converged with general inquiries about motifs and topo-

logical features that can generate such a property (see

[34]) to produce a meaningful and deep understanding. In

particular, many of these studies converged on the use of

integral feedback control, which was mathematically

demonstrated decades ago to ensure perfect adaptation

in the field of control theory [26,35,36].

Despite the success of small-scale and simple models,

biology itself is neither small-scale nor simple. And, when

using small-scale models to describe local nodes of a

bigger biological network or to simplify elaborate interac-

tions, we should continuously challenge our conclusions

by asking about the effects of the surrounding complexity.

What happens if the network motif that ensures perfect

adaptation has an extra link or is connected to another

network, or if the positive feedback that implements a

switch is also entangled in a negative feedback loop? Each

of these cases would have to be explored thoroughly,

building our understanding from the bottom-up.

Large-scale models: embracing biological
complexity
The premise of large-scale models is that all components

and interactions that comprise a system might be needed
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in order to reproduce its quantitative behavior accurately.

The construction and simulation of such models that are

faithful to details and complexity is now facilitated by

acceleration in experimental data collection and growth in

computational power (e.g. see [37]).

At the extreme of this spectrum are studies that attempt

whole-cell modeling, seeking to describe how the phe-

notype arises from the genotype by accounting for all

genes/proteins and interactions in a cell (i.e. human

pathogen Mycoplasma genitalium), integrating multiple

sources of data, as the transcriptome, proteome, and

metabolome in a condition of interest, as well as more

general properties of the cell, such as mass, geometry, and

cell-cycle state [38�,39]. The resulting models have so far

included hundreds of variables and thousands of param-

eters whose values have to be mostly assumed. Insights

generated by these models include the identification of

new gene functions and the prediction of biological

processes not directly accessible by existing experimental

measurements [38�].

Large-scale models also arise from efforts to reconstruct

cellular networks in an unbiased way (top-down) from

high-throughput data [40]. These reconstructions have

proven to be useful to provide an overview of cellular

connectivity, but the analyses of the resulting models

have often focused on isolating a few structural compo-

nents and interactions associated with a phenotype of

interest [41].

A third general approach for large-scale modeling is one in

which the complexity is built stepwise, first by building

simple models and then embedding them in a more

elaborate physiological reality. For example, Spiesser

et al. [42�] presented a multiscale simulation platform

to integrate an osmostress response model with its phys-

iological context (e.g. cell division cycle), as well as the

cell-to-cell variation expected in a cellular culture. This

model revealed previously underestimated features that

are dependent on population dynamics, such as partial

synchronization during osmoadaptation [42�].

Overall, while large-scale models are undeniably closer to

biological reality, the task of interpreting their findings

remains difficult. The many parameters of these models,

most of which are poorly measured or not measured at all,

makes it difficult to differentiate conclusions and predic-

tions that are dependent on parameter choices from those

that are robust and general.

A new approach: accounting for complexity
without getting entangled in it
Recent years have seen the emergence of an exciting

modeling approach, which we call here ‘complexity-

aware simple modeling’. The goal is to preserve the

small-scale modeling approach for representing a
www.sciencedirect.com
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Complexity-aware simple models consider a small number of components and interactions necessary to explain a behavior of interest. They also

include an abstract representation of the largest class of complex interactions, which when connected to the simple model, have a minimal impact

on its behavior.
biological process, but without ignoring the complexity

surrounding it. In fact, the point is to identify the largest

and most complex class of interactions, which when

connected to the simple model, fail to perturb its behav-

ior. In this framework, the biological process of interest is

modeled with the resolution needed but the surrounding

complexity (e.g. connected networks) is deliberately kept

undefined or defined by the most abstract representation

possible. Statements about the behavior of the system of

interest are then formulated and demonstrated to hold

even in the presence of the unmodeled interactions

(Figure 1).

A representative example of this approach asked whether

there is a simple biochemical motif (with its correspond-

ing simple model) that can achieve integral feedback

when connected to an arbitrarily complex network (with

any number of components and interactions, as well as

undefined parameter values) [43��]. The result was the

so-called ‘antithetic motif’, where two molecular species

bind to each other and annihilate each other’s function

through this binding. Now, imagine that one of the

‘antithetic’ molecular species controls the input of the

complex network while the other is produced by the

output of the same network. In this case, it can be

mathematically demonstrated that the steady-state value

of the network’s output perfectly adapts regardless of any

step perturbation inside this network (Figure 1). The
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antithetic motif used in this configuration therefore

implements integral feedback action. One requirement

of this adaptation is that the only source of decay for the

two molecules of the antithetic motif is their mutual

annihilation, not their individual degradation or inactiva-

tion. While such perfect adaptation holds for an arbitrarily

complex network connected to the antithetic motif, it is of

course contingent on the network being responsive to the

input from this motif. Its behavior is also dependent on

the properties and constraints of the connection between

the motif and its interconnected complex network. Still,

this is a remarkable property with two main implications.

First, it provides a recipe for building a simple ‘adduct’ to

a very complex network that makes it perfectly adapting.

Second, when this antithetic motif is found in endoge-

nous biological networks, we can isolate the motif, ignore

the rest and declare the network perfectly adapting

without the need to detail its complexity in order to infer

the perfect adaptation property. A similar approach has

been implemented to identify other integral control

motifs [44��] and to prescribe a general and robust cell

fate reprogramming strategy [45��].

A variation on this theme seeks to find bounds on behav-

ior for classes of systems that share a small number of parts

but can be arbitrarily different in others. For instance,

being cognizant that all molecular interactions in cells are

probabilistic, it is possible to define general relationships
Current Opinion in Microbiology 2018, 45:47–52
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and bounds on the cell-to-cell variability in the antithetic

motif (explained above) that hold irrespective of any

complex network connected to it. Assuming stochastic

birth, death, and binding reactions of the molecules in

this motif, algebraic expressions based on relating average

abundances and covariances for the two antithetic species

can be combined with simple mathematical properties of

normalized covariances to derive an appropriate bound on

the fluctuations of these species. This approach showed a

fundamental trade-off: molecular fluctuations in the

counts of free molecules have to increase if a higher

efficiency of binding between the antithetic molecules

(and formation of their bimolecular complex) is desired

[46��]. This bound holds irrespective of, and cannot be

alleviated by, connectivity to any network of arbitrary size

or complexity. Therefore, this relationship is only based

on a few specified interactions and is invariant to any

networks in which those interactions might be embed-

ded. This idea can further be exploited to rule out the

plausibility of specific classes of interactions for an under-

lying biological process given experimental data. For

example, if one is hypothesizing the presence of an

antithetic motif, but experimental measurements of fluc-

tuations and complex formation efficiency are outside the

general bound delineated by their theoretically deter-

mined relationship, one can efficiently rule out the

involvement of this motif irrespective of other un-char-

acterized components present in the network. Such an

approach was productively used in a different context to

determine that a common class of gene expression models

in which protein synthesis is proportional to mRNA levels

cannot account for experimental single cell measure-

ments in Escherichia coli [47��,48]. This determination

was based on the fact that the measured values of covari-

ance metrics between mRNA and protein differ signifi-

cantly from predicted relationships. Here again, predicted

values are based on a simple model but are invariant to the

potential complex connectivity of this model.

Final thought
Systems biology is often thought of as ‘the tool to unravel

black boxes’ [49]. We pose here the question of whether,

when modeling biological systems, it is sometimes more

productive to deliberately keep some boxes closed

through what we have called ‘complexity-aware simple

models’, or other approaches that adopt a similar philoso-

phy. We find this idea appealing, and advocate for con-

sidering its implications. Might it be a fruitful way to

approach the coarse-graining that is needed to traverse

the different scales of biological organization? Might it a

useful replacement for detailed descriptions of certain

processes in whole cell models? Finally, the resemblance

between this concept of modeling and the main tenants of

Robust Control Theory is unmistakable. Might it be

developed and become known as Robust Modeling

Theory?
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At the same time, we caution that only a few examples of

the success of this approach exist and that there is still no

clear disciplined way to implement such analyses in a

general sense. We also caution that models are used for a

variety of reasons and for asking different questions [5�].
Therefore, we must continue to unabatedly define mod-

els at a resolution that enables them to be useful tools for

answering these questions. Fundamentally, we aim our

discussion of complexity-aware simple models to provide

some food for thought and hopefully a subject for a

vigorous scientific debate.
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Spiesser T, Kühn C, Krantz M, Klipp E: The MYpop toolbox:
Putting yeast stress responses in cellular context on single
cell and population scales. Biotechnol J 2016, 11:1158-1168
http://dx.doi.org/10.1002/biot.201500344.

A pipeline integrating multi-scale data to build large-scale quantitative
models that account for cell-to-cell variability.

43.
��

Briat C, Gupta A, Khammash M: Antithetic integral feedback
ensures robust perfect adaptation in noisy biomolecular
networks. Cell Syst 2016, 2:15-26 http://dx.doi.org/10.1016/j.
cels.2016.01.004 arXiv:1410.6064.

Prominent example of complexity-aware simple modeling, where an
‘antithetic’ motif is demonstrated to provide perfect adaptation to an
arbitrary network connected to it, even in the presence of biochemical
noise.

44.
��

Briat C, Zechner C, Khammash M: Design of a synthetic integral
feedback circuit: dynamic analysis and DNA implementation.
ACS Synth Biol 2016, 5:1108-1116 http://dx.doi.org/10.1021/
acssynbio.6b00014.

This paper suggests a strategy for an ‘integral feedback’ motif that
achieves perfect adaptation and is robust to surrounding complexity.

45.
��

Del Vecchio D, Abdallah H, Qian Y, Collins JJ: A blueprint for a
synthetic genetic feedback controller to reprogram cell fate.
Cell Syst 2017, 4 http://dx.doi.org/10.1016/j.cels.2016.12.001
109-120.e11.

This paper suggests a synthetic feedback control strategy to efficiently
reprogram cell fate.
Current Opinion in Microbiology 2018, 45:47–52

http://dx.doi.org/10.1063/1.1350439
http://dx.doi.org/10.1038/nrm2530
http://dx.doi.org/10.1038/nrm2530
http://dx.doi.org/10.1126/science.270.5237.808
http://dx.doi.org/10.1126/science.270.5237.808
http://dx.doi.org/10.1126/science.1102540
http://dx.doi.org/10.1126/science.1102540
http://dx.doi.org/10.1038/nsmb.3327
http://dx.doi.org/10.1016/S0955-0674(03)00017-6
http://dx.doi.org/10.1016/S0955-0674(03)00017-6
http://dx.doi.org/10.1098/rsob.120179
http://dx.doi.org/10.1098/rsob.120179
http://dx.doi.org/10.1016/j.ceb.2013.07.007
http://dx.doi.org/10.1016/j.ceb.2013.07.007
http://dx.doi.org/10.1126/science.1183372
http://dx.doi.org/10.1098/rsif.2016.0475
http://dx.doi.org/10.1016/j.tibs.2014.08.003
http://dx.doi.org/10.1016/j.tibs.2014.09.003
http://dx.doi.org/10.1016/j.tibs.2014.09.003
http://dx.doi.org/10.1016/j.tibs.2014.10.002
http://refhub.elsevier.com/S1369-5274(17)30249-7/sbref0120
http://refhub.elsevier.com/S1369-5274(17)30249-7/sbref0120
http://dx.doi.org/10.1038/43199
http://dx.doi.org/10.1038/43199
http://dx.doi.org/10.1073/pnas.97.9.4649
http://dx.doi.org/10.1073/pnas.97.9.4649
http://dx.doi.org/10.1371/journal.pcbi.1003694
http://dx.doi.org/10.1371/journal.pcbi.1003694
http://dx.doi.org/10.7554/eLife.03526
http://dx.doi.org/10.7554/eLife.03526
http://dx.doi.org/10.15252/msb.20167044
http://dx.doi.org/10.1006/jtbi.2001.2422
http://dx.doi.org/10.1006/jtbi.2001.2422
http://dx.doi.org/10.1093/aob/mcm313
http://dx.doi.org/10.1016/j.cell.2009.04.047
http://dx.doi.org/10.1016/j.cell.2009.04.047
http://dx.doi.org/10.1002/wsbm.1307
http://dx.doi.org/10.1016/j.cell.2009.06.013
http://dx.doi.org/10.1016/0005-1098(76)90006-6
http://dx.doi.org/10.1016/0005-1098(76)90006-6
http://dx.doi.org/10.1109/37.248006
http://dx.doi.org/10.1155/2017/5958321
http://dx.doi.org/10.1016/j.cell.2012.05.044
http://dx.doi.org/10.1016/j.cell.2012.05.044
http://dx.doi.org/10.1016/j.mib.2015.06.004
http://dx.doi.org/10.1016/j.mib.2015.06.004
http://dx.doi.org/10.1038/nrm1570
http://dx.doi.org/10.1038/nrm1570
http://dx.doi.org/10.1101/gr.5750507
http://dx.doi.org/10.1002/biot.201500344
http://dx.doi.org/10.1016/j.cels.2016.01.004
http://dx.doi.org/10.1016/j.cels.2016.01.004
http://dx.doi.org/10.1021/acssynbio.6b00014
http://dx.doi.org/10.1021/acssynbio.6b00014
http://dx.doi.org/10.1016/j.cels.2016.12.001


52 Microbial systems biology
46.
��

Hilfinger A, Norman TM, Vinnicombe G, Paulsson J: Constraints
on fluctuations in sparsely characterized biological systems.
Phys Rev Lett 2016, 116:1-5 http://dx.doi.org/10.1103/
PhysRevLett.116.058101.

Example of complexity-aware simple modeling that identifies fundamen-
tal trade-offs in the stochastic behavior of a simple motif that holds
irrespective of a complex connected network.

47.
��

Hilfinger A, Norman TM, Paulsson J: Exploiting natural
fluctuations to identify kinetic mechanisms in sparsely
characterized systems. Cell Syst 2016, 2:251-259 http://dx.doi.
org/10.1016/j.cels.2016.04.002.

An example where complexity-aware simple models are used to system-
atically test distinct mathematical models against experimental data and
Current Opinion in Microbiology 2018, 45:47–52 
rule out classes of assumed biological interactions irrespective of sur-
rounding complexity.

48. Taniguchi Y, Choi PJ, Li GW, Chen H, Babu M, Hearn J et al.:
Quantifying E. coli proteome and transcriptome with single-
molecule sensitivity in single cells. Science 2010, 329:533-538
http://dx.doi.org/10.1126/science.1188308.

49. Takors R, de Lorenzo V: Editorial overview: microbial systems
biology: systems biology prepares the ground for successful
synthetic biology. Curr Opin Microbiol 2016, 33:viii-x http://dx.
doi.org/10.1016/j.mib.2016.08.003.
www.sciencedirect.com

http://dx.doi.org/10.1103/PhysRevLett.116.058101
http://dx.doi.org/10.1103/PhysRevLett.116.058101
http://dx.doi.org/10.1016/j.cels.2016.04.002
http://dx.doi.org/10.1016/j.cels.2016.04.002
http://dx.doi.org/10.1126/science.1188308
http://dx.doi.org/10.1016/j.mib.2016.08.003
http://dx.doi.org/10.1016/j.mib.2016.08.003

	Complexity-aware simple modeling
	Introduction
	Small-scale models: the power of simplicity
	Large-scale models: embracing biological complexity
	A new approach: accounting for complexity without getting entangled in it
	Final thought
	References and recommended reading
	Acknowledgements


