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Evolutionary dynamics of an epigenetic switch in a fluctuating environment
S1 Appendix. Supplementary Table: Previous Work

They compared three different strategies: non-inducible (with
a small stochastic transition rate), completely inducible, or an

Inducible Periodic & intermediate response (memory), considering some induction
switching; Average . random; - Differential Induction Growing Non- delay and the phenotypic memory as a tunable property. They
Jablonka et al. : 1995 stochastic growth rate Both Z-discrete asymmetric Symmetric growth rate delay (discrete) overlapping observed that the intermediate response is advantageous
switching (2 states) under random environmental fluctuations; if the environment
is strictly periodic, the inducible system is favored unless
fluctuations occur faster than the induction delay.
Inducible They explored the optimal values for the transition rates
Lachmann & switching; Average . . Periodic . Differential Growing Non- under fluctuating environments; they concluded that for non-
Jablonka 1996 stochastic growth rate Analytical Z-discrete (2 states) Symmetric growth rate None (discrete) overlapping : inducible systems, the optimal rate for random transitions is
switching around the frequency of the environmental fluctuations.
They considered that the transitions between phenotypic
Inducible states depend on the environment and explored under which
Thattai & van switching; Average . . Periodic & random . Differential Growing Continuous :circumstances a transition rate to the “unfit” state different to
Oudenaarden 2004 stochastic growth rate Analytical Z-discrete (2 states) Symmetric growth rate None (continuous) : time (ODEs) : zero will be selected; they concluded that if the transition to
switching the “fit” state is fast enough —short induction delay—, an
homogeneous population will be always favored.
They compared inducible to stochastic transitions but taking
Inducible Sensing, in account the cost of sensing, the induction delay and the
Kussell & 2005 switching; Average Analvtical n-discrete Random No explicit Differential diversity & Growing Continuous diversity cost imposed by the stochastic switching. They
Leibler stochastic growth rate \ (n states) assumption | growth rate induction = (continuous) : time (ODEs) : concluded that a sensor is only worth if the environment is
switching delay costs highly uncertain, and the stochastic switching will be favored
when the environment changes infrequently.
. Periodic; . . . . They considered only stochastic transitions, and they
Kussell etal. : 2005 Sstleligﬁf:c rﬁ\\:\iﬁ%aete Both 2-discrete asymmetric Asymmetric Drlgf;;ﬁnrg?é None (cc?r:g:ﬁg%s) g&ln(%u[?;ss) observed that the type of environmental changes determines
g g (2 states) g the strategy to be used. _
They considered more flexible adaptation strategies, going
Fixed: inducible from ignoring the environment, a deterministic inducible
sw’itchin . Average n-discrete Random; Differential Growin Non- response, stochastic inducible response, to pure stochastic
Wolf et al. 2005 stochastigé rowth %ate Both (focus on n=2) asymmetric Asymmetric rowth rate None (discretg) overlabpin switching. If no sensor exists, stochastic switching is always
switchin g B (n states) g PPN - selected under the time-varying environmental conditions
g selected here, as well as if the detection of the sensor is bad
or long induction delays exist.
Inducible: He modeled individual cells as toggle switches and explored
stochastié Fixed (discrete; the population behavior under a fluctuating environment,
Ribeiro 2008 switchin Invasion Simulations Continuous Random Symmetric Truncation None 1000 ’ Non- considering both inducible systems and pure stochastic
(bistableg (mechanistic) (2 states) Y selection individuals) overlapping : switching. He concluded that the optimal noise level depends
enetic circuit) on the environmental fluctuations, and as noise increases, the
8 fitness increases too in fast fluctuating environments.
Assuming an infinite population and following subpopulation
frequencies through generations, they explored the impact of
. . . - tric fitness landscapes. They concluded that with the
Fixed; 2-discrete - Proportional Infinite (sub- asymme :
. ‘. . . . . o Periodic & random . X . Non- fitness asymmetry over a certain threshold, unless the
Salathé etal. . 2009 Sst\zlct};zlsl?c Invasion Simulations . (x Zstr:%(isﬁer (2 states) Asymmetric S:Jﬁ;gqoen None ffeopuuelit;ioer;) overlapping selection pressure is very strong in both environments,
g q ignoring the environment becomes optimal over stochastic
switching (with an optimal rate approximately equal to the
environmental fluctuation frequency).
They observed that as the asymmetry in the environments
increases, the selected strategy goes from the optimal
Fixed; Periodic; . . Infinite (sub- . stochastic switching population (where the transition rate is
Gaal et al. 2010 stochastic rﬁ\\:ftrr?%:te Analytical 2-discrete asymmetric Asymmetric Drf\f/zﬁnrg?é None population n(_:r?]r;tl(%uggss) assumed equal in both directions) to an equally optimal non-
switching g (2 states) g frequencies) switching and switching populations, to finally being optimal

to ignore the environment, even if a local maximum still exists
for a switching rate distinct to zero.




Fixed;

Responsive (i.e.
catastrophe rate
depends on the

They explored the selection of stochastic switching under a
single environment with occasional and instantaneous

. . Average . i population); . Differential Growing Continuous : catastrophic events whose rate depends on the population
Visco et al. 2010 iﬁ;&ﬁfgc growth rate Analytical Z-discrete random (one Asymmetric growth rate None (continuous) : time (ODEs) : structure. They observed that stochastic switching strategy is
8 normal state & favored by strong catastrophes, while non-switching by weak
instantaneous catastrophes.
catastrophe)
Average (xz;—jrlrﬁcc):fi;ier Infinite (sub- They took Salathé et al. (2009) and Gaal et al. (2010) one step
. Stochastic - Periodic " Differential . Non- forward including recombination in the model; they observed
Liberman et al. . 2011 switching gsrt()i\rq’\fgsgiae Both féigﬁg\i’rlwt:- (2 states) Symmetric growth rate None ffe()puuelitggg) overlapping : that, under their model, recombination makes unlikely that a
tion) a stable non-zero transition rate exists.
They considered a strong frequency-dependent selection,
Strong with an exclusion rule for the most fitted subpopulation and
Fixed: Average Periodic (one frequency bottleneck when the environment changes. Even considering
. . - probability of o normal state & . dependent Switching Growing Continuous a switching cost —reducing the growth rate on switching
Libby & Rainey : 2011 Sétv(v)ﬁzﬁfr?c being Both 4-discrete instantaneous Symmetric selection: cost (continuous) : time (ODEs) : genotypes—, exclusion rules are observed to favor switching
g selected catastrophe) exclusion rule + phenotypes; on the other hand, larger (weaker) bottlenecks
bottleneck permit faster-growing, non-switching types to pass through to
the next “round” outgrowing the switching type.
. . . A Proportional Fixed (discrete; ~ They found that phenotypic variability increases in
F";T;’;:‘n 2012 S;,S.i?ﬁf:c Prosllj.lars:ll?ll of Simulations n-discrete (gesr::$§) Symmetric selection None 10000 ove”gn in populations under fast fluctuating environments, but this
g scheme individuals) PPINE - offect disappears as the fluctuations become less frequent.
They not only included a mechanistic model, but considered
. the genetic adaptation to explore the adaptive origin of
Genetic . N . ! X
L stochastic epigenetic switches under fluctuating
adaptation; s ic  Proportional Fixed (discrete; i They observed that bistabili di
Kuwahara & stochastic Natural ; . Continuous  Periodic & random: >¥Mmmetric roportiona heed (discrete; Non- environments. They observed that bistability emerges and is
Sover 2012 switchin selection Simulations (mechanistic) (2 states) (binary selection None overlappin maintained only in a limited range of evolutionary conditions,
\ (bistableg function) scheme individuals) PPINg " 5nd suggested that its selection occurs only as a byproduct of
enetic circuit) the selection for evolvability. Noteworthy, they assumed a
g “binary” fitness function which would not favor the underlying
bimodal distribution in a bistable system.
4-discrete
- 2-modifier - - . . Infinite (sub- . .
. Stochastic . (x ; Periodic & random: No explicit Differential > Non- An extension of Liberman et al. (2011) model; they reached
Carja et al. 2013 switching Invasion Both states with (n states) assumption : growth rate None population overlapping similar conclusions.
recombina- frequencies)
tion)
Inducible 2-discrete They expanded the classical modifier model (e.g. Salathé et
o (x 2-modifier - . . . . Infinite (sub- ~ al., 2009) to consider inducible switching and the associated
?:I':imﬁ‘ 2014 2}[’\32?‘2!11% Invasion Simulations : states with 2 Per|o((;|cst§t;asr)1dom Asymmetric Dr'ctfﬁ;ﬁnrha?é Egli?:t?grf population ove’r\llgn in cost. They observed that the environmental fluctuation
switchin epigenetic g 8 frequencies) pping frequency influences the conditions for evolution of
g states) epigenetic regulation (either induced or stochastic switching).
2-discrete They took Salathe et al. (2009) one step forward including
(x 2-modifier Infinite (sub- migration in the model, and study the evolution of switching
Carja etal. Stochastic . . Periodic . Differential > Non- rates in the presence of both spatial and temporal
(Genetics) 2014 switching Invasion Both :;i(t)enigi’:; (2 states) Symmetric growth rate None fE:puu;iEiZ:) overlapping | heterogeneity in selection pressures. They observed that the
tion) q evolutionary dynamics of the system are mainly governed by
the environmental fluctuation rate.
4-discrete They took Salathe et al. (2009) and Liberman et al. (2011) one
(x 2-modifier Infinite (sub- step forward including migration in the model, and compare it
Carjaetal. 2014 Stochastic Invasion Both states with Periodic & random Asymmetric Differential None opulation Non- to the effect of mutation and recombination as sources of
(PNAS) switching M (2 states) Y growth rate pop N overlapping : phenotypic variation; they observed that, under their model,
recombina- frequencies) h h ially diff It P d
tion) these three essentially different evolutionary forces respon

very similar to fluctuating selection.




They used an abstract model which, while simple, can still

Inducible . . . display plasticity, bet-hedging, and genetic adaptation. Testing
P - Proportional . Fixed (discrete; : S e

switching; Natural . . . Periodic ] . Phenotypic ! Non- multiple environmental variation patterns, they observed that

Boteroetal. - 2015 genetic selection Simulations . Continuous (continuous) Symmetric sseclﬁzt:noen plasticity indi/?c?gals) overlapping different adaptive responses consistently evolve under
adaptation different timescales and predictabilities of the environmental

variation.
They explored the origin of the stochastic transitions in
Fixed: Periodic fluctuating environments distinguishing between standing
. . . . . . Differential Growing Continuous : variation and de novo mutations using both an experimental
Lin et al. 2015 sst\:’ﬁfgalsrt;lc Frequency | Simulations Z-discrete lg%):ttlzzeesc)lg Symmetric growth rate None (discrete) time and a mathematical model. They concluded that the
g contribution of each of these mechanisms on the adaptation
process depends on the fluctuation timescales.
They explored the stochastic switching rate dependency to

s ) . . the environmental fluctuation frequency in asymmetric

Belete & Balazsi 2015 Stochastic Average Both 2-discrete asPemrIr(T:C:eltcryic Asymmetric . Differential None leedl(()c(J)l(ngrete, Non- environments and fitness as the environmental duration

switching growth rate 4 Y growth rate g overlapping shorten. In this limit, they observed that the previously

(2 states) individuals) . . R ) :
described optimal switching rate matching environmental
fluctuation frequency does not always hold.
Genetic
a adaptation; . . . .
Buchler S(\i)vllsttc:ll)rI]eg selection (mechanistic) (2 states) e, scheme - overlapping

genetic circuit)
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S2 APPENDIX. ALTERNATIVE ASSUMPTIONS DETAILS.

We tested the robustness of our results to alternative choices and assumptions in the
presented model by: changing the used evolutionary model (Section A), allowing the en-
vironment to fluctuate randomly between the two possible states with mean frequency v
(Section B), using the average protein number or the distribution of protein numbers over
the individual life span as phenotype (Section C), changing the fitness function to a Gaus-
sian or a step-like function with similar span around the optimal phenotypes (Section D),
implementing different selection schemes (Section E), as well as different mutation schemes
(Section F). Additionally, more quantitative aspects of the model were perturbed by ex-
ploring other optimal phenotypes for the environments (Section G), basal activity « values
(Section H), and different degradation rate v values (Section I). In addition, we allowed

the basal activity « parameter to evolve simultaneously with {k,ny, Kp} (see S10 Fig).

A. Moran model

Wright-Fisher and Moran models are the most common options to simulate evolution.
In our main simulations, we implemented a version of the Wright-Fisher model with non-
overlapping generations. Alternatively, we tested a Moran model, where the reproduction
and death events are treated as stochastic events allowing overlapping generations. At each
time step, an individual is chosen for reproduction using the defined tournament selection
scheme, and an individual is randomly chosen from the population for death to keep the
population size N fixed. N time steps occur in the previously defined lifespan time, such

that the reproduction rate (and then mutation) is equivalent to the original model.

B. Environmental random fluctuations

The environmental fluctuations in our main simulations were regular and periodic with
frequency . We tested whether stochastic fluctuations with frequency v produced different
results; even though previous work demonstrated little difference between the two types of
fluctuations [1-4]. In these alternative simulations, the environment fluctuates randomly

between the two possible states with mean frequency v.



C. Phenotype definition

Our simulations evaluated the protein number (phenotype) at the end of Gillespie simula-
tion (individual life span) to calculate a fitness score given by a Lorentzian function centered
the optimal phenotype. We also tested alternative phenotype definitions: (1) the life-time
average protein number to assign its fitness score to each individual in the population, or
(2) the life-time protein number distribution to calculate the average fitness score for each

individual in the population.

D. Fitness functions

We also changed the shape of the fitness function from a Lorentzian to a Gaussian fitness
function:

_(A—a(E)y2

wB(A)=e ¥ (S1)

g

where 0(215) is equal to the width in the Lorentzian fitness function (v?); or a step-like function:

1 if (A= A®)? <207,

w®(4) = : (S2)

0, otherwise

where 0(215) is equal to the width in the Lorentzian fitness function (v?).

E. Selection schemes

We used Tournament selection to select the next generation of cells based on the fitness of
the individuals in the current generation. Other common selection schemes are Truncation,
Proportional, and Weighted selection [5].

In the truncation selection scheme, only a certain fraction of the best individuals can be
selected, each with the same probability. Blickle & Thiele (1995) calculated the truncation
fraction that resulted in the same selection strength as a given tournament size (Table I).
They estimated that s; = 40 corresponds to a 0.04 truncation fraction. We used this fraction
in our Truncation selection simulation.

Using the proportional selection scheme, the probability of an individual to be selected

is proportional to its fitness value. Similarly, in the weighted selection scheme, a random



TABLE I. Evolutionary parameters

Parameter Range Units
N Population size {100, 250, 630, 1600, 4000, 10000} individuals
v Environmental fluctua-{{0.01,0.02,0.04,0.0625,0.10} 1/generation

tion frequency

st Selection pressure (i.e.|{3(47%),6(24%),15(10%), individuals
tournament size) 40 (4%), 100 (1.7%), 250 (0.7%) }*
u Mutation rate {0.01,0.03,0.10} (1/individual)
(1/generation)

M Mutation step-size (i.e.[{1.1,1.4,1.7,2.1,2.6,3.2,4.0,5.0}

maximum fold change)

% The equivalence between tournament size and truncation selection is shown in parenthesis.

The numbers in italics were inter- and extrapolated from the values presented in [5].

individual is picked from the population and is cloned into the new population if a uniformly
distributed random number (from the interval [0,1]) is below its fitness. Importantly, the

selection strength cannot be directly tuned in either of these two schemes.

F. Mutation scheme

Our simulations used a spherically symmetric 3D mutation scheme to permit co-variation
in biophysical parameters in a single mutational step. Co-variation is expected in a natural
system as a single mutation can simultaneously affect multiple biophysical parameters; and
the spherical space is a natural interpretation of M as the maximum mutation step-size,
making it the maximum fold-change “distance” from the parental genotype. The actual
mutation step size was determined by the radius of the spherical mutation, which was a
uniformly distributed random value between 0 and 1 (r ~ U(0,1)). Such a radial density
produces a non-uniform density of mutations with highest densities close to the parental
phenotype because volume scales as 73. We tested homogeneous spherical mutation by sub-
stituting  in Egs. (5-7) with </ and a homogeneous cubic mutation where three uniformly
distributed random value between -1 and 1 (r; ~ U(—1, 1)) for each biophysical parameter.

We also verified that mutating only one parameter at a time (1D mutation) and increasing

4



the range of biophysical parameters to allow higher nonlinearity (1072 < ny < 24) and
weaker DNA dissociation constants (1072 < Kp < 10%) did not fundamentally change our

results.

G. Optimal phenotypes

The main simulations were performed with the LOW environment selecting for an optimal
phenotype AX) = 20 proteins and HIGH environment for an optimal phenotype AU = 80
proteins. The effects of doubling (A") = 40 proteins, AH) = 160 proteins) and dividing by

two (A = 10 proteins, A = 40 proteins) these values were explored.

H. Basal activity

At high levels of nonlinearity, the lowest protein level is k - a and the highest protein
level is k. A bistable, epigenetic switch has two solutions, each well-adapted to one of the

(L) 14D

opt opt =

environments only when the ratio R = A a (S1 Fig). Any mismatch between «
and R will disfavor epigenetic switching because an epimutation from an adapted mode will
jump to a maladapted mode, after which the descendants must accumulate genetic mutations
to further adapt. We explored the effect of other values of basal activity parameter (v = 0.2,
and a = 0.3), but adjusting the LOW optimal phenotype accordingly (A*) = 16 proteins,
and A" = 24 proteins, respectively).

The rate of epimutation is sensitive to the frequency and magnitude of stochastic events.
The magnitude of stochastic events is inversely proportional to the total number of molecules.
A higher rate of epimutation for smaller numbers of molecules is expected. The rate of

epimutation should also increase as the two modes become closer. Thus, we expect a higher

rate of epimutation for larger a.

I. Degradation rate

The protein degradation rate () sets the timescale between stochastic events (i.e. faster

protein degradation leads to more stochastic events per unit time during a Gillespie simula-



tion). Thus, we expect a higher rate of epimutation for larger ~.
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