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Abstract
Gene regulatory networks with negative feedback play a crucial role in conferring robustness and
evolutionary resilience to biological systems. However, the discrete nature of molecular
components and probabilistic interactions in these networks are inherently subject to fluctuations,
which pose challenges for stability analysis. Traditional analysis methods for stochastic systems, like
the Langevin equation and the Fokker–Planck equation, are widely used. However, these methods
primarily provide approximations of system behavior and may not be suitable for systems that
exhibit non-mass-action kinetics, such as those described by Hill functions. In this study, we
employed a second-moment approach to analyze the stability of a gene regulatory network with
negative feedback under intrinsic fluctuations. By transforming the stochastic system into a set of
ordinary differential equations for the mean concentration and second central moment, we
performed a stability analysis similar to that used in deterministic models, where there are no
fluctuations. Our results show that the incorporation of the second central moment introduces two
additional negative eigenvalues, indicating that the system remains stable under intrinsic
fluctuations. Furthermore, the stability of the second central moment suggests that the fluctuations
do not induce instability in the system. The stationary values of the mean concentrations were
found to be the same as those in the deterministic case, indicating that fluctuations did not
influence stationary mean concentrations. This framework provides a practical and insightful
method for analyzing the stability of stochastic systems and can be extended to other biochemical
networks with regulatory feedback and intrinsic fluctuations through a framework of ordinary
differential equations.

1. Introduction

Gene regulatory networks inherently exhibit fluctu-
ations owing to the discrete nature of their molecu-
lar components and probabilistic interactions among
a small number of molecules [1, 2]. Stochastic fluc-
tuations in gene expression arise from both intrinsic
and extrinsic sources. Intrinsic fluctuation stems
from the random nature of molecular interactions [2,
3], whereas extrinsic fluctuation reflects variability in
the cellular environment. Together, these fluctuations
can profoundly influence the dynamics and stability

of gene networks [4, 5]. Understanding the functional
role of such fluctuations is essential because they can
lead to adaptive phenotypic variability, for example,
through stochastic switching, and may compromise
the robustness of biological systems [6].

Various mathematical frameworks have been
developed to analyze these stochastic systems. While
the chemical master equation provides a general
description, it is analytically intractable in most cases
[3], leading researchers to employ approximation
methods. Among these, the Langevin equation [7],
linear noise approximation [8, 9], and Fokker–Planck
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equation [3] are widely used. Although some studies
have focused on studying gene regulatory networks
with negative feedback within a stochastic frame-
work, some of these are based on contrasting what
happens with stochastic simulations and with the
linear noise approximation [9–11]. However, these
methods may be inadequate for systems involving
non-mass-action kinetics, such as Hill functions.
Hill functions are crucial for modeling cooperat-
ive binding and switch-like behavior in gene regu-
latory networks, capturing the nonlinearity inher-
ent in transcriptional regulation [12]. Moment-based
approaches have emerged as powerful alternatives in
this context [13, 14]. Hernández-García et al [15]
established conditions for networks governed by Hill
kinetics, under which the second-moment approach
precisely describes the system with intrinsic fluctu-
ations. This approach reduces the complexity of the
stochastic model to a tractable set of ordinary dif-
ferential equations describing the mean concentra-
tion and second central moment of the molecular
species [13, 16]. Although higher-ordermoments can
be incorporated to improve the accuracy [17], the
second central moment is often sufficient to cap-
ture the essential features of stochastic fluctuations in
many biologically relevant systems.

In this study, we leveraged this exact second-
moment approach to analyze the stability of gene
regulatory networks subject to intrinsic fluctuations.
Stability analysis provides insights into the sys-
tem behavior under perturbations and is critical
for understanding the robustness of biological net-
works. Unlike Lyapunov-based methods, which rely
on constructing suitable Lyapunov functions based
on approximate stochastic descriptions [18–20], our
approach operates directly on the exact moment
equations without the need for such approximations.
Although other moment-based methodologies util-
ize the zero-information closure [21] or bounded the
value of the moments [22], our approach enables a
rigorous stability analysis to be conducted directly
from themoment equations. By examining the eigen-
values of the linearized system, we assessed the tend-
ency of the network to return to equilibrium, offering
a deeper understanding of how intrinsic fluctuations
affect system reliability [23].

To exemplify the approach, we focused on sys-
tems with negative feedback, a common regulatory
motif in gene networks, which occurs when a gene
product inhibits its own production either directly
or indirectly [1]. This mechanism acts as a stabiliz-
ing force, helping maintain homeostasis and buffer
the system against internal and external perturbations
[24]. Additionally, this type of system can exhibit
oscillations if it has a delay or intermediate processes
[25, 26]. Notable examples include the p53-Mdm2
feedback loop [4, 27], in which p53, a tumor sup-
pressor protein, is tightly regulated to prevent uncon-
trolled cell proliferation, and the Hes-1 system, which

plays a key role in neural stem cell differentiation
and other developmental processes [28, 29]. Studying
such networks is crucial because negative feedback
contributes to the robustness, adaptability, and evol-
utionary resilience of gene regulatory systems [30].
A proper understanding of how stochastic effects
interact with feedback mechanisms will be instru-
mental in unraveling the principles that govern cel-
lular decision-making and stability.

We chose to analyze a gene regulatory net-
work with two nodes and negative feedback as
a simple model that appears in diverse biological
systems [4, 27–33]. We can find analytic results to
compare the differences between deterministic and
stochastic stability analyses. We begin by analyzing
the deterministic model. Then, using the second-
moment approach, we perform a similar stability ana-
lysis that considers stochastic effects by introducing
ordinary differential equations for the second central
moment.

The remainder of this paper is organized as fol-
lows. In section 2, we introduce the chemical mas-
ter equation and derive a set of ordinary differential
equations for the mean and second central moment,
using the moment-based approach. In section 3, we
focus on the stability analysis of a gene regulatory
network with negative feedback, where we obtain
the conditions for stability in the stochastic regime.
Finally, in section 4, we present our discussion and
conclusions.

2. Moment approach

First, we present the chemical master equation con-
sidering only intrinsic fluctuations. This formula-
tion is fundamental for describing stochastic chem-
ical systems in which extrinsic fluctuations are not
included, as these arise from parameter variability,
such as changes in external factors like temperature
[4]. For this purpose, we followed the methodology
of Gardiner [3] for systems with only intrinsic fluctu-
ations. Let beN chemical species, Sl (l ∈ {1,2, . . .,N})
andm reactionsRi (i ∈ {1,2, . . .,m}), where the spe-
cies is transformed as follows:

Ri :
N∑
l=1

αilSl
ki→

N∑
l=1

βilSl.

The coefficients αil and βil are non-negative integers,
and are stoichiometric coefficients. ki are the para-
meters that determine the rate of the reaction Ri.
From these, we derive the stoichiometric matrix
of the system Γil = βli −αli (indexes are exchanged
because it is the transpose). Through collisions (or
interactions) between different elements, the system
evolves according to the law of mass action, and the
propensity rates are, [3]

2
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ai (S) = ki

N∏
l=1

Sl!

Ωαil (Sl −αil)!
, (1)

where the index i corresponds to reactions Ri and
S= (S1,S2, . . .,SN). These propensities represent the
transition probabilities per unit of time between dif-
ferent system states.Ω= NAV defines the system size,
whereNA is Avogadro’s number 1mol−1) andV is the
volume. Thus, Ω has units of volume per mole and
serves to convert molecule counts into molar concen-
trations or vice versa [34]. From this, we get the chem-
ical master equation,

∂tP(S, t) = Ω
m∑
i=1

(ai (S−Γi)P(S−Γi, t)

− ai (S)P(S, t)), (2)

where Γi represents the ith column of the matrix Γ.
Equation (2) describes the temporal evolution of the
probability of states of the system.

Analyzing the stability of a system directly from
the chemical master equation (2) is highly challen-
ging. Consequently, continuous approximations such
as the Langevin equation or Fokker–Planck equation
are often used [18]. However, these methods only
approximate the system behavior and may be inad-
equate for systems involving non-mass-action kin-
etics, such as Hill functions. Then, we employed a
moment-based approach [13, 16], which represents
the system as a set of ordinary differential equations
for the mean concentrations and second central
moment. Then, a stability analysis can be performed
in the samemanner as in the deterministic framework
(without fluctuations) [23], thereby significantly sim-
plifying the analysis. Before starting, we define the fol-
lowing quantities:

• The mean concentration of chemical species l, sl =
⟨Sl⟩
Ω .

• The second central moment between the chem-
ical species l1 and l2,M2

l1,l2
= 1

Ω2 ⟨(Sl1 −⟨Sl1⟩)(Sl2 −
⟨Sl2⟩)⟩, (l1, l2 ∈ {1,2, . . .,N}).

We assume that an analytical function f(S) of the sys-
tem variables can be expanded using a second-order
Taylor expansion around the mean as follows:

⟨f(S)⟩ ≈

〈
f(⟨S⟩)+

N∑
l1=1

(Sl1 −⟨Sl1⟩)
∂f(⟨S⟩)
∂Sl1

N∑
l1=1

+
N∑

l2=1

(Sl1 −⟨Sl1⟩)(Sl2 −⟨Sl2⟩)
2

∂2f(⟨S⟩)
∂Sl1∂Sl2

〉

= f(⟨S⟩)+
N∑

l1=1

N∑
l2=1

C2
l1,l2

2

∂2f(⟨S⟩)
∂Sl1∂Sl2

, (3)

where ⟨S⟩= (⟨S1⟩,⟨S2⟩, . . .,⟨SN⟩) is the mean state
vector and C2

l1,l2
=Ω2M2

l1,l2
. If function f is a polyno-

mial until order 2, then the expansion in (3) is exact.

To derive the differential equations for the mean
concentration and second central moments from the
chemical master equation, we considered reactions
up to the first order. For the mean concentration,
we multiplied the master equation by Sl, calculated
the mean, and utilized (3). A similar approach was
applied for the second central moments, resulting in
the following equations:

∂sl
∂t

=
m∑
i=1

ΓlikiRi (s) ,

∂M2
l1,l2

∂t
=

m∑
i=1

Γl1iΓl2ikiRi (s)

Ω
+

N∑
l3=1

(
M2

l1,l3Γl2iki

×∂Ri (s)

∂sl3
+M2

l3,l2Γl1iki
∂Ri (s)

∂sl3

))
, (4)

where s= (s1, s2, . . ., sN) and Ri(s) =
∏N

l=1 s
αij

l are the
reaction rates, these reaction rates are exact. With the
second central moment, we can quantify the fluctu-
ations. Using these equations, we analyze a particular
system in the next section. Equations in (4) are called
the second-moment approach and coincide with the
linear noise expansion [35].

Hernández-García et al [15] (Corollary 1) showed
that the system’s dynamics can be exactly captured
by ordinary differential equations for the mean and
second central moment, provided two conditions are
met: (i) the system includes only zero- and first-
order reactions, and (ii) the rate constants take the
functional form ki = k∗i f(s,M

2), explicitly depend-
ing on the mean concentrations and second central
moments. These equations correspond to those in
equation (4), but with functional parameters.

3. Stability analysis of a gene regulatory
network with negative feedback

In this section, we analyze a gene regulatory network
with negative feedback (see figure 1). This type of sys-
tem is known to exhibit either a stable steady state or
oscillatory behavior in deterministic descriptions [25,
26]. In the presence of fluctuations, negative feedback
is particularly important, as it can confer robustness
and evolutionary resilience [30], and reduce fluctu-
ations. Notably, it is also found in diverse biological
systems such as p53 andHes1, key regulators involved
in cancer suppression and cell maintenance [4, 27–
32]. Together, these features highlight the crucial role
of negative feedback in the function and evolution of
gene regulatory networks.

In this study, we used a simplifiedmodel with two
modules, considering only the dynamics of the pro-
teins (see figure 1). The system is described by the fol-
lowing reactions,∣∣∣∣∣∅

γ1−→P1
∅ γ2−→P2

∣∣∣∣∣ P1 δ1−→∅
P2

δ2−→∅

∣∣∣∣∣
3
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Figure 1. Negative feedback motif. This is a schematic
representation of a gene regulatory network with negative
feedback, where protein P1 suppresses the synthesis of
protein P2, whereas P2 activates the synthesis of P1, thereby
establishing a negative feedback loop. The proteins P1 and
P2 are degraded.

where the first reaction is the synthesis of P1, the
second is the degradation of P1, the third is the syn-
thesis of P2, and the last is the degradation of P2.
Parameters δ1 and δ2 are the rates of protein degrad-
ation. Without loss of generality, we can take δ1 = δ,
and δ2 = 1, which can be shown by variable rescaling.
Additionally, the two effective parameters γ1 and γ2

are related to the syntheses of P1 and P2, respectively,
and their forms are given in the following subsections.
The stoichiometric coefficients areαli and β li, and the
stoichiometric matrix Γ il are,

αli =


0 0
1 0
0 0
0 1

 , βli =


1 0
0 0
0 1
0 0

 ,

Γil =

(
1 −1 0 0
0 0 1 −1

)
. (5)

The reaction rates of the system,

R1 = 1, R2 = p1,

R3 = 1, R4 = p2. (6)

Next, we analyze the system in both deterministic and
stochastic regimes, which helps us understand the sta-
bility of the system.

3.1. Deterministic stability analysis
First, we analyze the deterministic description of the
system. We compared this result with the moment
approach, which we present in the next subsection.
In this description, the functional parameters γ1 and
γ2 have the next form,

γ1 = γ∗
1

(
p̂22

1+ p̂22

)
,

γ2 = γ∗
2

(
1

1+ p̂21

)
, (7)

where p̂1 and p̂2 are the deterministic concentrations
of P1 and P2 respectively, γ∗

1 and γ∗
2 are the max-

imum protein synthesis rates. The terms in paren-
theses are Hill functions, and we chose the Hill coeffi-
cient equal to two for both. The first is the Hill func-
tion for an activator and the second for a repressor;
thus, we obtain negative feedback. We set the dissoci-
ation constant to one in both Hill functions. This is
achieved through variable rescaling and reduces the
number of parameters in the system. The ordinary
differential equations for the deterministic concen-
trations are

∂p̂1
∂t

=γ1 − δp̂1,

∂p̂2
∂t

=γ2 − p̂2. (8)

In the stationary state, we need to solve the next
equations to get the values of p̂1,ss and p̂2,ss

0=γ∗
1

(
(p̂2,ss)

2

1+(p̂2,ss)
2

)
− δp̂1,ss,

0=γ∗
2

(
1

1+(p̂1,ss)
2

)
− p̂2,ss. (9)

To do a stability analysis of the system, we need to get
a set of differential equations around the equilibrium
from (8), where we define

∂γ1
∂p̂2

|(p̂2=p̂2,ss) = 2γ∗
1 p̂2,ss

(
1

1+(p̂2,ss)
2

)2

= A1,

∂γ2
∂p̂1

|(p̂1=p̂1,ss) =−2γ∗
2 p̂1,ss

(
1

1+(p̂1,ss)
2

)2

=−A2,

(10)

defining the next variables as∆p̂1 = p̂1 − p̂1,ss,∆p̂2 =
p̂2 − p̂2,ss, the set of ordinary differential equations is
as follows:

∂∆p̂1
∂t

=A1∆p̂2 − δ∆p̂1,

∂∆p̂2
∂t

=−A2∆p̂1 −∆p̂2, (11)

then, the Jacobian matrix of this system is

J=

(
−δ A1

−A2 −1

)
. (12)

The eigenvalues of this matrix are,

λ1 =
1

2

(
−1− δ+

√
(1− δ)

2 − 4A1A2

)
,

λ2 =
1

2

(
−1− δ−

√
(1− δ)

2 − 4A1A2

)
, (13)

thus, we can perform a stability analysis because the
eigenvalues of the system can be used to determine the
stability of the system. The real part of the eigenvalue

4
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Figure 2. Real part of eigenvalues in deterministic regime. We generated both a 3D surface plot and a contour plot to visualize the
real parts of eigenvalues. In all cases, the real parts were negative, indicating that the system was stable. Notably, in a particular
region of the parameter space, both eigenvalues share equal real parts, whereas their imaginary parts are nonzero. This indicates
the presence of damped oscillations because the system exhibits complex eigenvalues with negative real parts in that region.

that dominates the dynamic of the system λd determ-
ines the stability of the whole system [23], where the
eigenvalue that dominates the dynamics is the eigen-
value that has the maximum real part, then:

• If ((1− δ)2 − 4A1A2)⩽ 0 :
then Re(λd) =−

(
1+δ
2

)
, in which case the system is

stable and has a stable spiral focus, as shown in this
region in figure 2, where Re(λ1) = Re(λ2).

• If ((1− δ)2 − 4A1A2)> 0:
we analyze this case for cases,
– if δ= 0 and A1A2 = 0 then λd = 0, this case does
not exist, because if this happens, there is no
dynamics in the system.

– if δ ≫ 1 and δ ≫ A1A2 thenλd =− 1
2 , in this case

the system has a stable point.

In figure 2 we show the values of the eigenvalues with
respect to δ andA1A2, wherewe can see that the values
of the eigenvalues are alwaysminor to zero, the system
is always stable when the real parts of both eigenvalues
are equal and exhibit damped oscillations, the system
has a stable spiral focus, and in the rest of the region,
there is a stable point.

3.2. Stochastic stability analysis
In the previous subsection, we analyzed the eigen-
values of the system in a deterministic regime. To
perform a similar analysis in the stochastic regime,
we propose using a second-moment approach. This
method is exact when the system involves only zero-
and first-order reactions, and incorporates effect-
ive parameters that depend on the second cent-
ral moment [15], which includes Hill functions.
We propose this framework because it describes the
stochastic system through a set of ordinary differ-
ential equations, thereby simplifying the stability
analysis. This reduction is particularly advantageous
compared with methods such as Lyapunov functions
[18, 19].

In the stochastic regime, the effective parameters
γ1 and γ2 have the next form,

γ1 = γ∗
1

( (
p22 +M2

2,2

)
− p2

Ω

1+
(
p22 +M2

2,2

)
− p2

Ω

)
,

γ2 = γ∗
2

(
1

1+
(
p21 +M2

1,1

)
− p1

Ω

)
, (14)

where p1 and p2 are the mean concentrations of P1

and P2, and M2
1,1 and M2

2,2 are the second central

5
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moments of P1 and P2, γ∗
1 and γ∗

2 are the maximum
synthesis rates of the proteins. The terms in paren-
theses are Hill functions, and we chose the Hill coef-
ficient equal to two for both. For further details on
these derivations, please refer to Hernández-García
et al [15] or appendix A. These Hill functions are
exact because they account for all terms without
any approximation, including the second central
moment. Similar to the deterministic regime, the first
Hill function is for an activator, and the second for a
repressor. We chose a dissociation constant equal to
one for both Hill functions.

This system satisfies Corollary 1 in Hernández-
García et al [15] and can be described exactly up to
the second central moment. Then the equations for
the mean concentrations are as follows,

∂p1
∂t

=γ1 − δp1,

∂p2
∂t

=γ2 − p2, (15)

for the second central moment

∂M2
1,1

∂t
=

1

Ω
(γ1 + δp1)− 2δM2

1,1,

∂M2
2,2

∂t
=

1

Ω
(γ2 + p2)− 2M2

2,2. (16)

The analysis in this work focuses on a specific case,
in which the Hill function explicitly depends on the
second central moment. However, this framework
can be extended to account for higher-order central
moments if the Hill function is dependent on these
moments [15]. In appendix B, we include an example
involving auto-negative regulation, where we show
how higher moments behave and how the stability
can be affected. Although our main method focuses
on second moments, the example illustrates how the
framework could be extended.

From (15)–(16), we can analyze the stationary
state, thenwe have the following results for the second
central moments,

M2
1,1,ss =

p1,ss
Ω

,

M2
2,2,ss =

p2,ss
Ω

, (17)

from these results, we see that each protein has
a Poisson distribution in the stationary state, in
appendix C we compare the results of stochastic sim-
ulations and the prediction of equation (17) to the
type of distribution. To get the values of p1,ss and p2,ss
we need to solve the next equations

0=γ∗
1

(
(p2,ss)

2

1+(p2,ss)
2

)
− δp1,ss,

0=γ∗
2

(
1

1+(p1,ss)
2

)
− p2,ss, (18)

these equations do not depend on the second cent-
ral moment, and are identical to those employed
in the deterministic description to obtain station-
ary deterministic concentrations. From this result, we
can conclude that the moment-based analysis yields
the same equations as the deterministic approach for
stationary mean concentrations, and fluctuations do
not affect the stationary points in accordance with
the deterministic description, where fluctuations are
absent. Based on (17) and (18), we can find a rela-
tion between the determinist concentration andmean
concentration, that is, p̂1 = limΩ→∞ p1 (similar to
protein P2), where the second central moments (17)
are zero, and the size of the fluctuations is zero; in
other words, there are no fluctuations.

From (15)–(16) we can get a set of differential
equations around the equilibrium, for these we define
the next,

∂γ1
∂p2

|(p2=p2,ss,M2
2,2=

p2,ss
Ω ) = 2γ∗

1 p2,ss

(
1

1+(p2,ss)
2

)2

− γ∗
1

Ω

(
1

1+(p2,ss)
2

)2

= A1 −
A3

Ω
,

∂γ1
∂M2

2,2

|(p2=p2,ss,M2
2,2=

p2,ss
Ω ) = γ∗

1

(
1

1+(p2,ss)
2

)2

= A3,

∂γ2
∂p1

|(p1=p1,ss,M2
1,1=

p1,ss
Ω ) =−2γ∗

2 p1,ss

(
1

1+(p1,ss)
2

)2

+
γ∗
2

Ω

(
1

1+(p1,ss)
2

)2

=−A2 +
A4

Ω
,

∂γ2
∂M2

1,1

|(p1=p1,ss,M2
1,1=

p1,ss
Ω ) =−γ∗

2

(
1

1+(p2,ss)
2

)2

=−A4,

(19)

defining the next variables like ∆p1 = p1 − p1,ss,
∆p2 = p2 − p2,ss, ∆M2

1,1 =M2
1,1 −M2

1,1,ss, and
∆M2

2,2 =M2
2,2 −M2

2,2,ss, then the set of differential
equations became like follow, for the mean concen-
trations

∂∆p1
∂t

=

(
A1 −

A3

Ω

)
∆p2 +A3∆M2

2,2 − δ∆p1,

∂∆p2
∂t

=

(
−A2 +

A4

Ω

)
∆p1 −A4∆M2

1,1 −∆p2, (20)

for the second central moment

∂∆M2
1,1

∂t
=

1

Ω

((
A1 −

A3

Ω

)
∆p2 +A3∆M2

2,2

+δ∆p1

)
− 2δ∆M2

1,1,

∂∆M2
2,2

∂t
=

1

Ω

((
−A2 +

A4

Ω

)
∆p1 −A4∆M2

1,1

+∆p2

)
− 2∆M2

2,2, (21)

then, the Jacobian matrix of this system is
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Figure 3. Real part of eigenvalues in stochastic regime. We plotted the real parts of the eigenvalues using both a 3D surface plot
and a contour plot. The results show that all the real parts of the eigenvalues remain negative, confirming the local stability of the
steady state. In particular, we identified a region where two eigenvalues (λ1 and λ2) have equal real parts, while their imaginary
parts are nonzero, indicating the presence of damped oscillations in this region of the parameter space. Importantly, the
eigenvalues do not depend on the system size parameterΩ; therefore, the results of this plot are valid for any system size.

Jsc =


−δ A1 − A3

Ω 0 A3

−A2 +
A4
Ω −1 −A4 0

δ
Ω

A1−
A3
Ω

Ω −2δ A3
Ω

−A2+
A4
Ω

Ω
1
Ω −A4

Ω −2

 . (22)

The eigenvalues of this matrix are

λ1 =
1

2

(
−1− δ+

√
(1− δ)

2 − 4A1A2

)
,

λ2 =
1

2

(
−1− δ−

√
(1− δ)

2 − 4A1A2

)
,

λ3 =− 2δ,

λ4 =− 2. (23)

It is worth noting that the eigenvalues λ1 and λ2

are the same as those obtained in the deterministic
regime, and two new eigenvalues, λ3 and λ4, appear
compared with the deterministic system, which are
independent of Ω, the size of the system, and from
A3 and A4. The case where δ= 0 is discarded because
this means that protein P1 is not degraded. From this,
it is evident that both new eigenvalues are less than
zero, indicating that the system remains stable under
the intrinsic fluctuations captured by the second cent-
ral moment, and the fluctuations are also stable. In
figure 3, all real parts of the eigenvalues of the system
are plotted, and we can observe that all are less than
zero.
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Figure 4. Dynamics of the linearized stochastic and deterministic system under different regimes. We show two representative
examples, one of which features a much faster degradation rate for P1. Panels (a) and (b) correspond to the parameters and initial
conditions in table D1, which yield damped oscillations; panels (c) and (d) use the parameters from table D2, where P1 degrades
more rapidly. Panels (a) and (c) compare the deterministic solution∆p̂1 with the mean concentration∆p1 obtained using the
second-moment approach, and a similar comparison is made for protein P2. Panels (b) and (d) show the corresponding variances
computed using the second-moment approach. In both cases, we observe that as the system sizeΩ increases, the mean dynamics
approach deterministic behavior, and the magnitude of the second central moment decreases.

Because the eigenvalues λ3 and λ4 are independ-
ent of the size of the system Ω, we can say that these
two eigenvalues are the ones that mainly govern the
dynamics of the second central moments, while the
first two the mean concentrations. In the system we
analyze, the structure of the dynamical equations is
independent of the system size Ω, and thus the ana-
lytical results are valid for any Ω. However, as shown
in figure 4 (where we numerically solved (20)–(21)),
the dynamical behavior depends on Ω in practice.
For small system sizes (e.g. Ω= 1), the stochastic

dynamics deviate noticeably from the deterministic
predictions. This discrepancy arises because intrinsic
fluctuations introduced through the nonlinear Hill
function have a stronger impact on the mean beha-
vior when the molecule numbers are low. In contrast,
as Ω increases, the fluctuations diminish, and the
stochastic dynamic closely match the deterministic
dynamics. This effect is particularly relevant in biolo-
gical systems, such as gene regulation, wheremolecule
counts are often low and stochastic effects can
dominate.

8
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Figure 5. Stochastic simulation vs moment approach. This figure shows the comparison between the stochastic simulations of the
model in appendix C (normalized trajectories Xi/Ω) and the predictions obtained from the second-moment approach (16)–(17).
Solid curves correspond to the mean concentrations, and shaded regions (±3Mi,i) indicate the standard deviation. The
fluctuations observed in the simulations lie within the predicted variance bands, confirming the accuracy of the moment-based
approach. Parameters and initial conditions are listed in table D3.

In figure 5, we compare a stochastic realization of
the model described in appendix C with the solution
given by the second-moment approach. The fluctu-
ations in the simulation lie within the predicted vari-
ance bands. This shows that the moment approach
provides an accurate description of both the mean
behavior and fluctuations of the stochastic system.
Since the system tends to a stationary point, a com-
parison of stationary distributions (also in C) shows
excellent agreement between the stochastic simula-
tions and the second-moment predictions.

Althoughmany existingmethodologies for study-
ing gene regulatory networks rely on stochastic simu-
lations or linear noise approximations [9–11], in this
study, we employed a set of ODEs that capture the
exact dynamics of the system. This approach provides
an alternative analytical framework for exploring
stochastic behavior by leveraging tools that are tra-
ditionally used in deterministic systems. Thus, our
methodology offers another perspective for study-
ing intrinsic fluctuations without relying on extensive
simulations, potentially facilitating broader analytical
insights into the transient dynamics of the gene regu-
latory networks. This can be relevant for systems such
as p53 [4, 27] or Hes-1 [28, 29], where fluctuations
can play an important role.

4. Discussion and conclusions

In this study, we performed stability analysis of a
gene regulatory network with negative feedback
using a second-moment expansion approach. This
approach describes the behavior of the system
under the assumption that the dynamics emerge
from an ensemble of random walks, and captures
this behavior through a set of ordinary differential
equations for the mean concentration and second
central moment.

Traditional stability analysis in a deterministic
framework, where fluctuations are absent, is based on
studying the stability of a set of ordinary differential
equations for deterministic concentrations. However,
in this study, we analyzed the stability of a stochastic
system affected by intrinsic fluctuations using a set
of ordinary differential equations for the mean con-
centrations and their variance, making the stability
analysis of stochastic systems more accessible. Gene
regulation was modeled using an exact Hill function
that depends on the second central moment. To do
this, we used the results from Hernández-García et al
[15], which allowed us to derive a closed set of dif-
ferential equations that precisely capture the system’s
dynamics.

For the specific case studied, the second cent-
ral moment introduced two additional eigenval-
ues along with those of the deterministic model.
These new eigenvalues were negative, indicating that
the system remained stable. Because the determin-
istic model remains stable for any parameter value,
and the additional eigenvalues introduced by the
stochastic model are negative, we conclude that
intrinsic fluctuations do not compromise the sys-
tem’s stability. Furthermore, the stability of the
second central moment suggests that the fluctuations
do not induce long-term instability in the system.
Additionally, the equations used to determine the
stationary values of the mean concentrations were
the same as those in the deterministic case, indic-
ating that fluctuations did not alter the stationary
state.

The method proposed in this study can be exten-
ded to analyze the stability of other biochemical net-
works, particularly those involving regulatory feed-
back and intrinsic fluctuations. Moreover, it has
potential applications in control theory because it
enables the design of control strategies that explicitly

9
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incorporate intrinsic fluctuations, thereby making
them more robust to biological variability. This
framework enables direct application of control the-
ory techniques developed for ordinary differential
equations to stochastic systems.
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Appendix A. Hill function

In this section, we derive the Hill function that is used in the principal text, and we base this derivation on
[16, 34]. For this, we suppose that we have the following reactions

R+ 2L
k+
⇄
k−

RL2,

0
k2
⇄
k1

L. (A1)

The first reaction is the binding of 2 ligands L to receptor R in a reversible process to form complex RL2. We
purposely wrote the last reaction because L may be subject to other reactions, and this reaction is a birth–
death process that synthesizes and degrades ligands. The stoichiometric coefficients and the stoichiometric
matrix are,

αij =


2 1 0
0 0 1
0 0 0
1 0 0

 , βij =


0 0 1
2 1 0
1 0 0
0 0 0

 , Γij =

−2 2 1 −1
−1 1 0 0
1 −1 0 0

 . (A2)

Let L,R,S be the number of molecules of L,R,RL2 respectively. Thus, the propensity rates are

a1 = k+R
L!

(L− 2)!

1

Ω3
, a2 =k−S

1

Ω
, (A3)

there is a conservative quantity R+ S= R0, the number of initial receptors, then the previous propensities are
reduced to

a1 = k+ (R0 − S)
L!

(L− 2)!

1

Ω3
, a2 =k−S

1

Ω
, (A4)

and

Γ ′
ij =

(
−2 2 1 −1
1 −1 0 0

)
. (A5)

If we suppose that the first reactions in (A2) are in the stationary state, S and L are independent, then the
central moments between S and L are zero, then we get the next equation

∂s

∂t
= 0=−k−s+ k+ (r0 − s)

1

Ω2

〈
L!

(L− 2)!

〉
, (A6)

where K2 = k−
k+

, r0 = R0/Ω, s= ⟨S⟩/Ω and r= ⟨R⟩/Ω are the mean concentrations of S and R, from this
we get

s= r0

1
Ω2

〈
L!

(L−2)!

〉
K2 + 1

Ω2

〈
L!

(L−2)!

〉 . (A7)

If we define the Hill function as follows and substitute r+ s= r0 and the value of s, we have

H=
s

r+ s
=

s

r0
=

1
Ω2

〈
L!

(L−2)!

〉
K2 + 1

Ω2

〈
L!

(L−2)!

〉 , (A8)

using the second-moment framework and defined l= ⟨L⟩/Ω andM2
l,l = ⟨(L−⟨L⟩)2⟩/Ω2, we get

H=
l2 +M2

l,l −
l
Ω

K2 + l2 +M2
l,l −

l
Ω

. (A9)

This expression is exact because we did notmake any approximations in the derivation. The derivation presen-
ted here is for an activator, but we can perform similar derivations for repressors or only use the relation
D= 1−H. For the recovery of the deterministic case, Ω→∞ and M2

l,l = 0. Following a similar procedure,
we can incorporate cases in which the number of ligands that binding the receptor increases.
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Figure B1. Auto-negative feedback. This is a schematic representation of a gene regulatory network with auto-negative feedback,
where protein P1 suppresses its synthesis, thereby establishing a negative feedback loop. Protein P1 is degraded.

Appendix B. Third-moment dependence

Following a similar derivation as in the principal text, we construct a set of ODEs that describe the dynamics of
a gene regulatory network with auto-negative regulation (see figure B1). In this case, we chose a Hill function
as

κ= κ∗

(
1

1++
(
p31 + 3p1M2

1,1 +M3
1,1,1

)
− 3

Ω

(
p21 +M2

1,1

)
+ 2p1

Ω2

)
, (B1)

where p1, M2
1,1 and M3

1,1,1 are the mean concentrations, second central moment and third central moment
of protein P1, respectively. In this case the Hill function is for a repressor and depends until the third central
moment, we chose the dissociation constant equal to one, κ∗ is the maximum synthesis of the protein, then
the set of ODEs that describes the dynamic of the system are

∂p1
∂t

=κ− δpp1,

∂M2
1,1

∂t
=

1

Ω

(
κ+ δpp1

)
− 2δpM

2
1,1,

∂M3
1,1,1

∂t
=

1

Ω2

(
κ− δpp1

)
+

3

Ω
δpM

2
1,1 +

3M2
1,1

Ω

(
κ− δpp1

)
− 3δpM

3
1,1,1. (B2)

The stationary state of the system is

M2
1,1,ss =

p1,ss
Ω

, M3
1,1,1,ss =

p1,ss
Ω2

, (B3)

and to determine the value of p1,ss, it is necessary to solve the next equation

0= κ∗

(
1

1+ p31,ss

)
− δpp1,ss. (B4)

From (B2) we can get a set of ODEs around the equilibrium, for these we define the next,

∂κ

∂p1
|(p1=p1,ss,M2

1,1=
p1,ss
Ω ) =−κ∗

(
3p1,ss

(
p1,ss −

1

Ω

)
+

2

Ω2

)(
1

1+(p1,ss)
3

)2

=−p1,ssB1 +
2B2

Ω2
, (B5)
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∂κ

∂M2
1,1

|(p1=p1,ss,M2
1,1=

p1,ss
Ω ) =−κ∗3

(
p1,ss −

1

Ω

)(
1

1+(p2,ss)
3

)2

=−B1,

∂κ

∂M2
1,1,1

|(p1=p1,ss,M2
1,1=

p1,ss
Ω ) =−κ∗

(
1

1+(p2,ss)
3

)2

=−B2. (B6)

Now we define the next values ∆p1 = p1 − p1,ss, ∆M2
1,1 =M2

1,1 −M2
1,1,ss∆M2

1,1 =M2
1,1 −M2

1,1,ss and
∆M3

1,1,1 =M3
1,1,1 −M3

1,1,1,ss, then the set of ODEs around the equilibrium became like follow,

∂∆p1
∂t

=

(
−p1,ssB1 +

2B2

Ω2
− δp

)
∆p1 −B1∆M2

1,1 −B2∆M3
1,1,1,

∂∆M2
1,1

∂t
=

1

Ω

(
−p1,ssB1 +

2B2

Ω2
+ δp

)
∆p1 −

(
B1

Ω
+ 2δp

)
∆M2

1,1 −
B2

Ω
∆M3

1,1,1,

∂∆M3
1,1,1

∂t
=

(
1

Ω2
+

3M2
1,1,ss

Ω

)(
−p1,ssB1 +

2B2

Ω2
− δp

)
∆p1

−
(
B1

Ω

(
1

Ω
+ 3M2

1,1,ss

)
+

3δp
Ω

)
∆M2

1,1 −
(
B2

Ω2
+ 3δp

)
∆M3

1,1,1, (B7)

using these equations, we determine the Jacobian matrix and calculate the eigenvalues of the system.

Appendix C. Stochastic simulations

To compare the results from the analytical model for a negative regulation that is present in this work, we
performed a stochastic simulation of the system, but we considered all reactions, including those that come
from the derivation of the Hill function; for this, we have the following reactions that are given in [16],∣∣∣∣∣∣∣∣

2P2 +R1
k+1−→R∗

1

R1
γ∗
1−→R1 + P1

P1
δ1−→∅

∣∣∣∣∣∣∣∣
2P1 +R∗

2

k+1−→R2

R2
γ∗
2−→R2 + P2

P2
δ2−→∅

∣∣∣∣∣∣∣∣
R1, R∗

1 , and P1 are the active polymerase region, inactive polymerase region, and protein, respectively, sim-
ilar to the other variables. For the left hand, the first reaction is the union of protein 1 to the active polymerase
to inactivate the polymerase, the next is the synthesis of the protein from an active polymerase, and the last is
the degradation of the protein, which is similar to the right hand, but here protein 1 activates the polymerase
region.

The stoichiometric coefficients are αli and β li, and the stoichiometric matrix Γ il are,

αli =



1 0 0 0 0 2
0 1 0 0 0 0
1 0 0 0 0 0
0 0 1 0 0 0
0 0 2 0 1 0
0 0 0 1 0 0
0 0 0 1 0 0
0 0 0 0 0 1


, βli =



0 1 0 0 0 0
1 0 0 0 0 2
1 0 1 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 2 0 1 0
0 0 0 1 0 1
0 0 0 0 0 0


, (C1)

Γil =



−1 1 0 0 0 0 0 0
1 −1 0 0 0 0 0 0
0 0 1 −1 −2 2 0 0
0 0 0 0 1 −1 0 0
0 0 0 0 −1 1 0 0
−2 2 0 0 0 0 1 −1

 . (C2)

The propensity rates of the system,

a1 = k+1 R1
P2 (P2 − 1)

Ω3
, a5 = k+2 R

∗
2
P1 (P1 − 1)

Ω3
,

a2 = k−1
R∗
1

Ω
, a6 = k−2

R2

Ω
.
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Figure C1. Stochastic simulation of a negative feedback. The result of the stochastic simulation of the system, where we used the
parameters and initial conditions of table D3. On the left is the stochastic simulation, and on the right is the histogram of the
number of protein molecules.

Figure C2. Comparing distributions. We compare the distribution obtained from the stochastic simulations with that predicted
by equation (17). On the left, we have protein P1 and on the right, protein P2. We can see that the values between the predicted
and stochastic simulations have a similar form.

a3 = γ∗
1
R1

Ω
, a7 = γ∗

2
R2

Ω
,

a4 = δ1
P1
Ω
, a8 = δ2

P2
Ω
. (C3)

Using all of these elements, we made a stochastic simulation following the Gillespie algorithm; the results
are in figure C1. Where we plotted the stochastic simulations and the histograms of the number of molecules
of the proteins P1 and P2.

In equations (17), the model predicts that the stationary distributions for each protein are Poisson distri-
butions. To validate this, we compared the results of the stochastic simulations with those for each protein, as
shown in figure C2. Here, we can see that the distribution obtained by the stochastic simulations and the one
predicted by each protein in the stationary state has a similar form. The difference arises from the fact that the
prediction is exclusively in the stationary state, whereas in the stochastic simulations, there are still dynamics.

Appendix D. Parameters

Tables D1–D3 list the parameters and initial conditions of the proposedmodel presented in this study.We also
use the same parameters for the deterministic and stochastic models, because they have a similar structure, but
in the deterministic model, we do not consider the dynamics of the varianceM2

i,i (i ∈ (1,2)) and A3 = A4 = 0.
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Table D1. Parameters and initial conditions for the system. (i ∈ 1,2) In this table, we show the parameters and initial conditions used for
the gene network with negative feedback in a region with damped oscillations.

Parameters Description Value

A1 P1 synthesis rate by P2. 2 h−1

A2 P1 synthesis rate by P1. 2 h−1

A3 P2 synthesis rate. 1 h−1

A4 P2 synthesis rate. 1 h−1

δ P1 degradation rate. 0.1 h−1

∆p1(0) Initial mean concentration of∆p1. 0 mol
∆p2(0) Initial mean concentration of∆p2. 0.1 mol
∆M2

i,i(0) Initial second central moment of concentration of species. 0 mol2

Table D2. Parameters and initial conditions for the system. (i ∈ 1,2) In this table, we show the parameters and initial conditions used for
the gene network with negative feedback in a region with a stable point.

Parameters Description Value

A1 P1 synthesis rate by P2. 2 h−1

A2 P1 synthesis rate by P1. 2 h−1

A3 P2 synthesis rate. 1 h−1

A4 P2 synthesis rate. 1 h−1

δ P1 degradation rate. 3.5 h−1

∆p1(0) Initial mean concentration of∆p1. 0 mol
∆p2(0) Initial mean concentration of∆p2. 0.1 mol
∆M2

i,i(0) Initial second central moment of concentration of species. 0 mol2

Table D3. Parameters and initial conditions for the stochastic simulation. In this table, we show the parameters and initial conditions
used for the gene network with negative feedback.

Parameters Description Value

k+1 Rate of binding of R1 and P2. ϵ−1 (mol2 × h)−1

k−1 Rate of decoupling. ϵ−1 h−1

k+2 Rate of binding of R∗
2 and P1. ϵ−1 (mol2 × h)−1

k−2 Rate of decoupling. ϵ−1 h−1

ϵ Inverse velocity to reach the stationary state. 0.005
γ∗
1 P1 synthesis rate. 4 h−1

γ∗
2 P2 synthesis rate. 1 h−1

δ1 P1 degradation rate. 1 h−1

δ2 P1 degradation rate. 1 h−1

R1(0) Initial number of molecules R1. 0.6 Ω
R∗
1 (0) Initial number of molecules R∗

1 . 0.4 Ω
P1(0) Initial number of molecules P1. 0.91 Ω
R2(0) Initial number of molecules R2. 0.2 Ω
R∗
2 (0) Initial number of molecules R∗

2 . 0.8 Ω
P2(0) Initial number of molecules P2. 0.54 Ω
Ω Size of the system. 100
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