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Note: Across this document, capital letters (e.g. X) represent both the species and its concentration; the sub-index
Xss refers to the steady state value; and lower-case Greek letters represent parameters, which by default are
non-negative real numbers.

S1 Foundations

The main conceptual ingredients of the CoRa approach have been developed by Savageau and colleagues a number of
decades ago. First, they showed how the local relative parameter sensitivity can be used to quantitatively
measure the properties of organized networks of enzyme-catalyzed reactions [11]. The local relative parameter
sensitivity measures the relative variation on some property of interest in a specific system in steady state (e.g.
control) with respect to the relative variation of a chosen parameter (e.g. the parameter representing the
perturbation). Building on this idea, in a second publication on 1971, they used the ratio of sensitivities involving
a controlled and an otherwise equivalent uncontrolled system to evaluate the effect of feedback control by inhibition
on the end-product of a biosynthetic pathway, proposing a metric called feedback effectiveness (FE) [10] . In this
paper, Savageau applied a formal approximation to simplify the studied system, allowing an analytical treatment.
Under this approximation, kinetic models are rewritten to a general canonical nonlinear form, known as S-systems
(see [12]), following the Power-Law formalism. Briefly, under this S-system form, each nonlinear differential equation
of the model is written aggregating all processes that contribute to the increase and to the decrease of the species in

power-law functions, d
dtXi = αiΠ

n
j=0X

gi,j
j − βiΠn

j=0X
hi,j
j , where gi,j , hi,j are the “apparent kinetic orders” of the rate

terms of species Xj with respect to the species Xi, and αi, βi ∈ R0+ (see [12] for more details). Using this S-system
model, Savageau [10] defines first the logarithmic gain of the system output species as the input species change (L),
which is shown to depend only on the g and h structural parameters of the system (i.e. independent of the particular
concentration value of the species). Then, they calculated the sensitivity of this logarithmic gain to changes on one of
these structural parameters (e.g. SL,h = ∂L

∂h
h
L ), and evaluated the ratio of sensitivity of the system with (SL,h, SL,g)

and without feedback (S′L,h, S
′
L,g). The analytical treatment of the S-system abstraction allows them to define a

simple expression for this ratio, and they defined the feedback effectiveness (FE) as

FE =
(
1− SL,h

S′L,h

)
/
(SL,h
S′L,h

)
=
(
1− SL,g

S′L,g

)
/
(SL,g
S′L,g

)
. FE represents then a quantitative measurement of the potency of the

feedback, with FE equal zero when there is no feedback, and increases its value as the strength of the feedback
increases. In this particular case, this FE metric is related to the CoRa metric developed here (see Section S2), with
CoRa = 1/(1 + FE).

Later, Savageau developed a generalization of the comparison between two systems that the differ only by one
element, coined it as mathematically controlled comparison [9]. This technique allows us to determine
irreducible differences in the response of the two compared systems (see Section S2 for a wider description in the
context of CoRa). And more recently, Savageau and colleagues (2000) [1] expanded the application of mathematically
controlled comparisons to a numerical implementation. Furthermore, Savageau and colleagues have shown the power
of the mathematically controlled comparison through multiple applications, including the evaluation of robustness of
synthetic oscillators [6], and for metabolic engineering strategies [13].

The parallelisms between CoRa and FE are validating for both of them (e.g. see Section S4.2). The FE metric has
the advantage of being supported on a strict mathematical formalism, which can be approached analytically.
Nevertheless, this requires recasting any kinetic model into an S-system formalism [12]. This can be cumbersome,
and as we demonstrate here, unnecessary to apply CoRa. As a result, CoRa brings a new perspective to the issue of
quantifying feedback control from a synthetic biology point of view, making this quantification facile, and making it
more approachable for the biology community in general.

S2 CoRa approach

CoRa –or Control Ratio– aims to quantify the effect of feedback control on a system’s ability to reject a step
perturbation, while considering the effect and constraints of the individual biochemical events. This is done by
directly comparing the feedback system of interest to a locally analogous system without feedback under the
formalism of mathematically controlled comparisons [1]. Each locally analogous system has exactly the same
biochemical reactions and parameters as the original feedback system (i.e. internal equivalence), with the exception

3/22



of the feedback link from the controlled subsystem. For each specific parameter set Θ (i.e. the value of all parameters
describing the system of interest), the feedback link is substituted by an equivalent constant input calibrated such
that the steady-state of all common species between the two systems are identical before a perturbation is applied
(i.e. external equivalence). This equivalence allows for a direct comparison of the controlled species change of both
systems following a specific step perturbation (e.g. step change in a parameter value), while accounting for the
influence of the nonlinearity, saturation, and other intrinsic particularities of the system, and guarantying that any
differential response of these two analogous systems represents an inherent functional difference associated with the
feedback control. The perturbation considered must not affect the constant input of the locally analogous system, as
otherwise the differential response can no longer be uniquely associated with the feedback control.

Let Y be the species over which we want to evaluate the feedback control effect, Yss|Θ denote the steady-state
value of the system with feedback for a parameter set Θ, and Yss,NF |Θ denote the steady-state value of the locally
analogous system without feedback. Let’s also consider a small step perturbation of a specific parameter ρ ∈ Θ
(ρ→ ρ′). Following this perturbation, Yss|Θ,ρ→ρ′ and Yss,NF |Θ,ρ→ρ′ denote that new steady-states of the feedback
system and locally analogous system without feedback, respectively.

CoRa is then defined as:

CoRaΘ(Y, ρ) =
∆log(Yss)|Θ,ρ→ρ′

∆log(Yss,NF)|Θ,ρ→ρ′
(S1)

=
log(Yss|Θ,ρ→ρ′)− log(Yss|Θ)

log(Yss,NF |Θ,ρ→ρ′)− log(Yss,NF |Θ)

=
log
(
Yss|Θ,ρ→ρ′
Yss|Θ

)
log
(
Yss,NF |Θ,ρ→ρ′
Yss,NF |Θ

)
Note that by construction the steady state value of the controlled species in the feedback system and the locally
analogous system without feedback are identical before a perturbation, i.e. Yss|Θ = Yss,NF |Θ.

Assuming that ∆ρ = ρ′ − ρ is small enough, the steady state value of the controlled species in the feedback system
and the locally analogous system without feedback can be expressed as linear functions of ∆ρ. The corresponding
CoRa function can then be written as:

CoRaΘ(Y, ρ) =
log(Yss(ρ+ ∆ρ))− log(Yss(ρ))

log(Yss,NF (ρ+ ∆ρ))− log(Yss,NF (ρ))

≈
log(Yss(ρ)) + ∆ρ d

dρ log(Yss)|ρ − log(Yss(ρ))

log(Yss,NF (ρ)) + ∆ρ d
dρ log(Yss,NF )|ρ − log(Yss,NF (ρ))

≈
d
dρ log(Yss)|ρ

d
dρ log(Yss,NF )|ρ

(S2)

Eq. S2 shows that in this regime, CoRa value is approximately independent of the perturbation size ∆ρ. In all the
analyses presented on this paper, we used ρ′ = 1.05ρ. We corroborated that this perturbation size was small enough
to reach the linear regime by confirming that identical results were obtained with ρ′ = 1.01ρ. Nevertheless, with the
smaller perturbation size (ρ′ = 1.01ρ), noise in the numerical solutions was observed for some cases. In general, like
for any linearization exercise, the acceptable perturbation size for numerical solutions needs to be evaluated for the
specific system and conditions of interest.

The value of CoRaΘ(Y, ρ) can be easily related to the logic of the feedback. We can abstract the control system to
a two-node network where one node represents the controlled species (Y ), and the other the rest of the system
including the dependency on the parameter ρ to be perturbed (x(ρ)). The locally analogous system can be
represented as an equivalent network, with a third node (∗) that represent the new input into the x(ρ) node. The
other link from x(ρ) to the controlled species (YNF ; link #1) remains the same between the two networks. The sign
of link #1 can be determined by comparing the controlled species before (YNF |Θ = Y |Θ) and after (YNF |Θ,ρ→ρ′) the
perturbation in the locally analogous system without feedback. For a positive perturbation, link #1 is positive
(#1 (+)) if and only if YNF |Θ,ρ→ρ′ > Y |Θ, or negative (#1 (−)) if and only if YNF |Θ,ρ→ρ′ < Y |Θ. The sign of the
feedback link from the controlled species to the x(ρ) node (link #2) can be determined by comparing the controlled
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species after the perturbation in the feedback system (Y |Θ,ρ→ρ′) and in the locally analogous system (YNF |Θ,ρ→ρ′).
It is positive (#2 (+)) if and only if Y |Θ,ρ→ρ′ > YNF |Θ,ρ→ρ′ , or negative (#2 (−)) if and only if
Y |Θ,ρ→ρ′ < YNF |Θ,ρ→ρ′ . Given the formula for CoRa (Eq. S1), we can see that CoRaΘ(Y, ρ) is bound between 0 and
1 whenever we have a negative feedback, and bigger than 1 in the case of a positive feedback.

Then, if CoRaΘ(Y, ρ) ∈ [0, 1), the presence of the feedback reduces the effect of the perturbation compared to the
locally analogous system without feedback, i.e. the system has an active negative feedback: either
0 ≤ ∆log(Yss)|Θ,ρ→ρ′ < ∆log(Yss,NF )|Θ,ρ→ρ′ or 0 ≥ ∆log(Yss)|Θ,ρ→ρ′ > ∆log(Yss,NF )|Θ,ρ→ρ′ . On the other hand, if
CoRaΘ(Y, ρ) > 1, the presence of the feedback amplifies the effect of the perturbation compared to the locally
analogous system without feedback, i.e. the system has an active positive feedback: either
∆log(Yss)|Θ,ρ→ρ′ > ∆log(Yss,NF )|Θ,ρ→ρ′ > 0 or ∆log(Yss)|Θ,ρ→ρ′ < ∆log(Yss,NF )|Θ,ρ→ρ′ < 0. Finally, if
CoRaΘ(Y, ρ) = 1, the feedback is effectively inactive. As the goal of CoRa is to quantify feedback control, which by
definition requires a corrective (negative) feedback regulation, CoRaΘ(Y, ρ) is bounded between 0 and 1 for the cases
of interest. More specifically, CoRaΘ(Y, ρ) = 0 only if the system displays perfect control (Yss|Θ,ρ→ρ′ = Yss|Θ), and
CoRaΘ(Y, ρ) value increases as the control effect decreases up until CoRaΘ(Y, ρ) = 1, when the feedback contribution
is effectively zero (i.e. the system response to the perturbation is exactly the same that the one of the system without
feedback).

S2.1 Steps for CoRa implementation

1. Define a solvable set of ordinary differential equations representing the biological system of interest,
where each equation describes the dynamics of the concentration of a molecular species involved in the system.
For example (see Section S3 for the full description of the biological system associated with these equations):

d

dt
U = µUY − (γ + γU )U − η+UW + (η0 + γW )C

d

dt
W = µW − (γ + γW )W − η+UW + (η0 + γU )C

d

dt
C = η+UW − (γ + η0 + η− + γU + γW )C

d

dt
Y = µYW − (γ + γY )Y

2. Define the controlled species of interest over which to evaluate the effect of the feedback control; the analysis
can be repeated for diverse species in the system. In the differential equations example above, a controlled
species of interest can be Y , and we may be particularly interested in its steady-state value.

3. Determine the feedback link functions as all functions dependent on the controlled species defined above (e.g.
Y ) through which this species influences the other molecular species (e.g. U,W,C). Feedback link functions are
therefore the links from the defined controlled subsystem to the rest of the system. In the example described
above, the unique feedback link function (fθ(Y )) is the regulated synthesis function of U dependent on Y :

fΘ(Y ) = µUY

Note: In general, CoRa can be calculated using a downstream element representing a measurement of the
controlled species of interest, e.g. a reporter protein. Nevertheless, when determining the feedback functions,
the directly controlled species –which is part of the feedback loop– must be considered.

4. Build the locally analogous no-feedback system as an identical set of equations as the full,
feedback-controlled system, except that the feedback link functions are substituted by constant inputs. These
inputs are not dependent on the controlled species (e.g. Y ), but have identical magnitudes when evaluated in
the pre-perturbation steady-state for the given condition (i.e. Θ). We can accomplish this through two
alternative strategies:

(a) Introduce some auxiliary species with constitutive expression (i.e. not regulated by any other molecule in
our system) with a pre-perturbation steady-state concentration that matches the concentration of the

5/22



regulatory species in the feedback link functions, i.e. the controlled species. Then, use the auxiliary species
in the feedback link functions. Using this strategy, the locally analogous no-feedback system for the
example described above would be:

d

dt
U = µUY∗ − (γ + γU )U − η+UW + (η0 + γW )C

d

dt
W = µW − (γ + γW )W − η+UW + (η0 + γU )C

d

dt
C = η+UW − (γ + η0 + η− + γU + γW )C

d

dt
Y = µYW − (γ + γY )

d

dt
Y∗ = µY∗ − (γ + γY∗)Y∗

where Y∗ represents the auxiliary (non-regulated) species, which is constitutively expressed with synthesis
µY ∗ = µYWss, and degradation γY ∗ = γY , such that the steady-state value of the locally analogous
system without feedback Yss,NF is equal to the steady state value of the feedback system Yss before a
perturbation to both systems takes them away from that identical steady-state.

(b) Substitute the feedback link functions dependent on the controlled species (e.g. fΘ(Y ) = µUY in the
example above) with a constant whose value is identical to the feedback link function values evaluated at
the pre-perturbation steady-state. Using this strategy, the locally analogous no-feedback system for the
example described above would be:

d

dt
U = µU∗ − (γ + γU )U − η+UW + (η0 + γW )C

d

dt
W = µW − (γ + γW )W − η+UW + (η0 + γU )C

d

dt
C = η+UW − (γ + η0 + η− + γU + γW )C

d

dt
Y = µYW − (γ + γY )Y

where U is now constitutively expressed with synthesis µU∗ = µUYss, such that here again, the steady
state value of the locally analogous system without feedback Yss,NF is equal to the steady state value of
the feedback system Yss.

The goal here is that both systems (the original feedback system and its locally analogous system without
feedback) have not only identical steady-state values for all species in the condition being evaluated, but if a
perturbation occurs, both systems would respond initially in an identical manner, as all the links (regulatory
functions) transmit exactly the same information (e.g. with identical levels of nonlinearity and saturation), with
the clear and intended exception that the “controlled species” in the locally analogous system cannot transmit
any feedback information. In general, for this interpretation to be valid, the breaking point (where a regulatory
function is substituted by a constant value) must be upstream of where the perturbation occurs; this can be
ensured for all types of perturbations if the feedback is broken right where the feedback link function occurs (as
proposed here).

If the system has multiple feedback loops, and hence multiple feedback link functions need to be defined, we
can either evaluate the contribution of each one individually or any combination of them. In either case, the
process proceeds exactly as detailed above.

It is essential that the original system and its locally analogous system differ only by the absence of the
feedback link, such that their differential response can be unequivocally associated with the role of the feedback
regulation. Then, when implementing the 4(a) strategy described above, the interaction of the auxiliary species
with the downstream elements on the feedback must perfectly mimic that of the controlled species, and the
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perturbation being evaluated must not affect the auxiliary species (e.g. changing dilution). When implementing
the 4(b) strategy described above, the constant value substituting the feedback link function must take into
account all the parameter values involved in the original feedback link function, with the limitation that
perturbations on how the controlled species interacts with the rest of the system cannot be evaluated.

5. Calculate the controlled species steady-state values for both systems before and after a perturbation of
interest, and obtain the associated CoRa value. For the example described above, for each specific parameter
set Θ:

(a) Calculate the controlled species steady state Yss|Θ for the original system.

(b) Calculate the controlled species steady state Yss,NF |Θ for the locally analogous system without feedback
system. Confirm that Yss = Yss,NF .

(c) Perturb the desired specific parameter ρ ∈ Θ by a small amount, ρ→ ρ′ (e.g. µY → 1.05 · µY ).

(d) Re-calculate the controlled species steady state Yss|Θ,ρ→ρ′ for the original system.

(e) Re-calculate the controlled species steady state Yss,NF |Θ,ρ→ρ′ for the locally analogous system without
feedback.

(f) Calculate the CoRa value:

CoRaΘ(Y, ρ) =
log
(
Yss|Θ,ρ→ρ′
Yss|Θ

)
log
(
Yss,NF |Θ,ρ→ρ′
Yss,NF |Θ

)
6. Once the system of interest and its locally analogous no-feedback system have been defined, the CoRa analysis

can be easily applied over again to any parameter set and perturbation of interest:

(a) Update the specific value of the auxiliary species (e.g. µY ∗ = µYWss) or the constant parameter (e.g.
µU∗ = µUYss) such that the constant input values in the no-feedback system are identical once again to the
feedback link function values in the feedback system (as described on step #4), keeping the no-feedback
system locally-analogous to the feedback system before the perturbation to be evaluated occurs.

(b) Re-calculate the steady-state controlled species responses to the perturbation of interest (step #5).

Note: Given that CoRa can be calculated for any parameter set of interest, we can easily explore a range of
values of specific parameter θ ∈ Θ. The resulting CoRa line (e.g. Fig. 1D, Fig. 2C-D, and Fig. 3 in the main
manuscript) is a representation of the capacity of feedback to mediate adaptation of the system’s output to
perturbations to the parameter ρ for every value of θ considered. In this work, θ is limited to a change in an
individual parameter.

S2.2 Algorithm for CoRa implementation

An algorithm to implement CoRa is available at https://github.com/mgschiavon/CoRa using Julia language.
Briefly, the pseudo-code representing this algorithm is presented in Algorithm 1.

S3 Analysis of a modified antithetic feedback control strategy using
CoRa

We consider a modified antithetic feedback motif (ATF; based on Briat et al. [2]) with a simple controlled subsystem
consisting of a single molecule Y . The ATF motif consists of two molecules U and W that bind to each other forming
a transitory complex C. C is then degraded leading to the disappearance of both U and W . Y is produced at a rate
that depends on the concentration of W , while U synthesis is induced by Y . The equations of the full system with
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Algorithm 1 Calculate CoRa line for a range of conditions

Include model equations, md.jl
odeFB := ODE feedback system
odeNF := ODE no-feedback system
localNF := Function to adjust odeNF parameters to make it locally analogous to odeFB

Include model parameter values, par.jl
Θ := Biochemical parameter values

Include perturbation instructions, pert.jl :
ρ := Parameter to be perturbed, ρ ∈ Θ
δ := Perturbation size (∆ρ)
θ := Condition parameter over which to calculate the line, θ ∈ Θ
r := Range of conditions to evaluate (i.e. θ values to evaluate)

for i ∈ r do
Θ[θ]← i . Update θ value.
Yss ← SS(odeFB(Θ)) . Get controlled species steady state.
ΘNF ← localNF(Yss,Θ) . Get parameters for locally analogous system.
YNF,ss ← SS(odeNF(ΘNF )) . Get analogous “controlled” species steady state.
if Yss 6= YNF,ss then . Check for numerical errors.

ERROR: Systems are not locally analogous.
break

end if
Θ[ρ]← Θ(ρ) ∗ δ . Perturb parameter.
ΘNF [ρ]← ΘNF (ρ) ∗ δ
Yss,D ← SS(odeFB(Θ)) . Get controlled species steady state.
YNF,ss,D ← SS(odeNF(ΘNF )) . Get analogous “controlled” species steady state.

CoRa[i]← log10(Yss,D/Yss)
log10(YNF,ss,D/YNF,ss)

. Calculate CoRa value for given conditions.

end for
return CoRa . Return CoRa line for the range of values provided.
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feedback are then given by:

d

dt
U = µUY − (γ + γU )U − η+UW + (η0 + γW )C (S3)

d

dt
W = µW − (γ + γW )W − η+UW + (η0 + γU )C (S4)

d

dt
C = η+UW − (γ + η0 + η− + γU + γW )C (S5)

For Y dynamics, two alternative scenarios can be easily foreseen: W can be either inactivated as a transcription
factor once it binds U (ATF v1; Fig. 2A),

d

dt
Y = µYW − (γ + γY )Y (S6)

or W retains its transcription factor activity until degraded (ATF v2; Fig. 2B),

d

dt
Y = µY (W + C)− (γ + γY )Y (S7)

Here all species are subject to loss by dilution (γ), in addition of their own individual degradation rates (γ�), µ�

represents the synthesis rate for each molecule (either constitutive, µW , or dependent of a transcription factor, µU and
µY ), and η− is the co-degradation rate of U,W in the complex form C; η+ is the binding rate of U and W (forming
the complex C); and η0 is the spontaneous unbinding rate of these two molecules (dissociating the complex C).

Choosing Y as the controlled species of interest, the corresponding locally analogous system without feedback
maintains the same ODE equations (Eqs. S4-S5, and either Eq. S6 or Eq. S7), with the exception of dU

dt ,

d

dt
U = µUY∗ − (γ + γU )U − η+UW + (η0 + γW )C (S8)

where U synthesis rate now depends on a new molecule Y∗ with dynamics

d

dt
Y∗ = µY∗ − (γ + γY∗)Y∗ (S9)

such that Y∗ is constitutively expressed with synthesis µY ∗. If γY ∗ = γY , then the steady state value of the locally
analogous system without feedback Yss,NF is equal to the steady state value of the feedback system Yss if either
µY ∗ = µYWss or µY ∗ = µY (Wss + Css), depending on the feedback system being considered (ATF v1 or ATF v2).

In this case, since Y∗ in the locally analogous system without feedback does not depend on any other molecule in
the system, its concentration will remain constant after any type of perturbation. As mentioned above, this is an
important requirement for the mathematically controlled comparison: if a perturbation also affects Y∗ value (e.g.
experimental perturbations on dilution, γ), the feedback system and the locally analogous system differ in more than
just the feedback information, and the CoRa value cannot be interpreted as simply the feedback contribution.

As described by Briat et al. [2], assuming there is no dilution (γ = 0) as well as no individual degradation of U
and W (i.e. independent of the complex formation C; γU , γW = 0), this system (Eqs. S4-S5) is expected to display
perfect step disturbance rejection (integral control or perfect adaptation):

d

dt
U = µUY − η+UW + η0C

d

dt
W = µW − η+UW + η0C

then
d

dt
(U −W ) = µUY − µW

and if
d

dt
Uss =

d

dt
Wss = 0 then Yss =

µW
µU

(S10)

In other words, Yss is controlled to a reference value µW
µU

, to which it returns exactly after any step perturbation to

the system, provided that the steady-state exists and it is stable (see Olsman et al. [7] for further discussion). This
conclusion is independent of the particular subsystem being controlled, W being inactive (Eq. S6) or active (Eq. S7)
in the complex form, as well the active degradation rate (η−), and complex formation dynamics ( ddtC).
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S3.1 Understanding effect of saturation on modified antithetic feedback control

S3.1.1 ATF control limits with inactive complex

In this section we prove that for the system described in Eqs. S3-S6, if (γ + γW ) > 0, as Y -synthesis rate (µY ) value
decreases, CoRaΘ(Y, µY )→ 1. Similarly, if (γ + γU ) > 0, as µY increases, CoRa saturates with CoRaΘ(Y, µY )→ 0.5.
These analytically argued results were corroborated by computational demonstrations.

Proposition 1. For the system described in Eqs. S3-S6, as µY → µ′Y , ∆log(Yss) = ∆log(µY ) + ∆log(Wss). Here,
for brevity, we denote Yss|Θ,µY by Yss, and Yss|Θ,µ′Y by Y ′ss, and similarly for Wss. Therefore
∆log(Yss) = log(Y ′ss)− log(Yss), ∆log(Wss) = log(W ′ss)− log(Wss), and ∆log(µY ) = log(µ′Y )− log(µY ).

Proof. Given Eq. S6, the controlled species steady state for the system is

Yss =
( µY
γ + γY

)
Wss (S11)

After a perturbation µY → µ′Y , the new controlled species steady state can be written as

Y ′ss =
( µ′Y
γ + γY

)
W ′ss (S12)

Then, the effect of the perturbation on the system can be quantified as

∆log(Yss) = log(Y ′ss)− log(Yss) = log
(Y ′ss
Yss

)
= log

(( µ′Y
γ+γY

)
W ′ss(

µY
γ+γY

)
Wss

)
= log

((µ′Y
µY

)(W ′ss
Wss

))
= ∆log(µY ) + ∆log(Wss) (S13)

where the effect of the feedback is introduced by the ∆log(Wss) component.

Consequence 1. In the absence of feedback (i.e. when U and the W do not depend on Y ), Wss should remain
constant after a µY -perturbation, i.e. ∆log(Wss) = 0. Then, for this system, the effect of the step µY perturbation is
simply equal to the size of the perturbation, i.e. ∆log(Yss) = ∆log(µY ).

Consequence 2. By definition, a system has feedback control if the presence of feedback reduces the effect of the
perturbation over the controlled species change, i.e. |∆log(Yss)| < |∆log(µY )|. Then, in order to have feedback
control, ∆log(Wss) < 0 if ∆log(µY ) > 0 (and vice versa). It follows that in a range of µY values with effective
feedback control, Wss must decrease monotonically as µY value increases.

Proposition 2. For the system described in Eqs. S3-S6, if (γ + γW ) > 0, the total W steady state
(WT,ss = Wss +Css) has an upper limit and lower limit that is independent of µY . Additionally, WT,ss approaches its
upper limit when Wss ≈WT,ss, and its lower limit when Css ≈WT,ss.

Proof. Let’s define total W as the sum of free molecule W and the complex molecule C, i.e. WT = W + C. Then,
the equation of change of WT corresponds to the sum of Eq. S4 and Eq. S5:

d

dt
WT =

d

dt
W +

d

dt
C

= µW − (γ + γW )(W + C)− η−C (S14)

Without loss of generality, we represent C as a fraction of the total W , αWT with α ∈ [0, 1]:

d

dt
WT = µW − (γ + γW + αη−)WT (S15)
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Then, in steady state:

WT,ss =
µW

γ + γW + αη−
(S16)

Given that all involved parameters are non-negative, and α ∈ [0, 1]:

µW
γ + γW + η−

≤ µW
γ+γW+αη−

≤ µW
γ + γW

µW
γ + γW + η−

≤ WT,ss ≤ µW
γ + γW

(S17)

Notice that the upper limit exists only if (γ + γW ) > 0. Moreover, it is clear that WT,ss approaches its upper limit
when α→ 0, i.e. WT,ss ≈Wss, while WT,ss approaches its lower limit when α→ 1, i.e. WT,ss ≈ Css.

Proposition 3. For the system described in Eqs. S3-S6, and within the range of µY for which the feedback is
effective (i.e. |∆log(Yss)| < |∆log(µY )| for all µY values within the range), CoRaΘ(Y, µY )→ 1 as µY decreases,
provided that (γ + γW ) > 0.

Proof. As WT,ss = Wss + Css is upper bounded (Eq. S17), Wss must have an upper limit as well (i.e. its
supremum, supµY (Wss) ≤ µW

γ+γW
). By Consequence 2 above, within the µY range where feedback control is effective,

Wss value increases as the µY value (before a perturbation is applied) decreases. Therefore, as µY decreases, Wss

approaches its supremum, supµY (Wss). As this occurs, the increment to its concentration (∆log(Wss)) after an
additional perturbation that decreases the µY value even further (i.e. ∆log(µY ) < 0) is constrained by the Wss

proximity to its limit. With some abuse of notation, we use the symbol ≈ to denote the situation in which this limit
is taken as Wss approaches its upper bound. As a result, in this regime, Wss ≈ supµY (Wss) and ∆log(Wss) ≈ 0.
Now, using Eq. S13 and Consequence 1,

CoRaΘ(Y, µY ) =
∆log(Yss)

∆log(Yss,NF)

=
∆log(µY) + ∆log(Wss)

∆log(µY)

≈ ∆log(µY)

∆log(µY)
(S18)

≈ 1 (S19)

Proposition 4. For the system described in Eqs. S3-S6, and within the range of µY for which the feedback is
effective (i.e. |∆log(Yss)| < |∆log(µY )| for all µY values within the range), CoRaΘ(Y, µY )→ 0.5 as µY increases,
provided that (γ + γU ) > 0.

Proof. By Consequence 2 above, in a range of µY values with feedback control, Wss value decreases as the µY
value (before a perturbation is applied) increases. As WT,ss = Wss + Css is lower bounded (Eq. S17), and WT,ss is
minimal when Css approaches WT,ss, Css must have an lower limit as well (i.e. its infimum, infµY (Css) ≥ µW

γ+γW+η−
),

and Css → infµY (Css) as µY increases.
Let’s define total U as the sum of free molecule U and the complex molecule C, i.e. UT = U + C. Then, the

equation of change of UT corresponds to the sum of Eq. S3 and Eq. S5:

d

dt
UT =

d

dt
U +

d

dt
C

= µUY − (γ + γU )(U + C)− η−C (S20)

= µUY − (γ + γU )UT − η−C (S21)

Let’s assume that µY is large enough such that Css approaches its lower bound, which is given by c = infµY (Css).
With some abuse of notation, we use the symbol ≈ to denote the situation in which this limit is taken as Css
approaches its lower bound.

UT,ss ≈ µUYss − η−c
γ + γU

(S22)
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and

Uss ≈ UT,ss − c

=
µUYss − (η− + γ + γU )c

γ + γU
(S23)

Solving Eq. S5 in steady state, and substituting Css, Uss,

0 = η+UssWss − (γ + η0 + η− + γU + γW )Css

Wss =
(γ + η0 + η− + γU + γW

η+

)(Css
Uss

)
= Kd

(Css
Uss

)
≈ Kd

( (γ + γU )c

µUYss − (η− + γ + γU )c

)
(S24)

with Kd := γ+η0+η−+γU+γW
η+

. Then, solving Eq. S6 in steady state, and substituting Wss,

0 = µYWss − (γ + γY )Yss

Yss =
µY

γ + γY
Wss

Yss ≈
( µY
γ + γY

)( Kd(γ + γU )c

µUYss − (η− + γ + γU )c

)
0 ≈ Y 2

ss −
( (η− + γ + γU )c

µU

)
Yss −

(µYKd(γ + γU )c

µU (γ + γY )

)
Yss ≈

(1

2

)(( (η− + γ + γU )c

µU

)
+

√( (η− + γ + γU )c

µU

)2

+ 4
(µYKd(γ + γU )c

µU (γ + γY )

))
=

( (η− + γ + γU )c

2µU

)(
1 +

√
1 + 4

( µY µUKd(γ + γU )

(γ + γY )(η− + γ + γU )2c

))
=

( (η− + γ + γU )c

2µU

)(
1 +

√
1 + a · µY

)
(S25)

with a := 4
(

µUKd(γ+γU )
(γ+γY )(η−+γ+γU )2c

)
. As a result, the change of the steady-state controlled species Yss after a small

perturbation on µY (µY → µ′Y , used to compute CoRa),

∆log(Yss) = log
(( (η−+γ+γU )c

2µU

)(
1 +

√
1 + a · µ′Y

)( (η−+γ+γU )c
2µU

)(
1 +
√

1 + a · µY
) )

= log
((1 +

√
1 + a · µ′Y

)(
1 +
√

1 + a · µY
) ) (S26)

On the other hand, given Consequence 1, the no-feedback system has ∆log(Yss,NF ) = ∆log(µY ) = log(
µ′Y
µY

), and the
associated CoRa value is given by:

CoRa =
log
(

1+
√

1+a·µ′Y
1+
√

1+a·µY

)
log(

µ′Y
µY

)
(S27)

As µY increases, with (a · µY )� 1, such that (1 +
√

1 + a · µY ) ≈ √a · µY , then

CoRa ≈
log
(

(a·µ′Y )0.5

(a·µY )0.5

)
log(

µ′Y
µY

)
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≈
0.5 log(

µ′Y
µY

)

log(
µ′Y
µY

)

≈ 0.5 (S28)

S3.1.2 ATF control limits with active complex

In this section, we demonstrate that for the system described in Eqs. S3-S5,S7, if (γ + γW ) > 0, as Y -synthesis rate
(µY ) value decreases, CoRaΘ(Y, µY )→ 1. Similarly, as µY increases, CoRa saturates with CoRaΘ(Y, µY )→ 1,
regardless of γ, γW , γU = 0. These analytically argued results were corroborated by computational demonstrations.

Proposition 5. For the system described on Eqs. S3-S5,S7, as µY → µ′Y , ∆log(Yss) = ∆log(µY ) + ∆log(WT,ss).
Here, for brevity, we denote Yss|Θ,µY by Yss, and Yss|Θ,µ′Y by Y ′ss, and similarly for WT,ss. Therefore
∆log(Yss) = log(Y ′ss)− log(Yss), ∆log(WT,ss) = log(W ′T,ss)− log(WT,ss), and ∆log(µY ) = log(µ′Y )− log(µY ).

Proof. Given Eq. S7, the controlled species steady state for the system is

Yss =
( µY
γ + γY

)
(Wss + Css)

=
( µY
γ + γY

)
WT,ss (S29)

After a perturbation µY → µ′Y , the new controlled species steady state can be written as

Y ′ss =
( µ′Y
γ + γY

)
W ′T,ss (S30)

Then, the effect of the perturbation on the system can be quantified as

∆log(Yss) = log(Y ′ss)− log(Yss) = log
(Y ′ss
Yss

)
= log

(( µ′Y
γ+γY

)
W ′T,ss(

µY
γ+γY

)
WT,ss

)
= log

((µ′Y
µY

)(W ′T,ss
WT,ss

))
= ∆log(µY ) + ∆log(WT,ss) (S31)

where the effect of the feedback is introduced by the ∆log(WT,ss) component.

Consequence 3. In the absence of feedback (i.e. when U and W do not depend on Y ), WT,ss should remain
constant after a µY -perturbation, i.e. ∆log(WT,ss) = 0. As a result, the effect of the perturbation on the system is
simply equal to the size of the perturbation, i.e. ∆log(Yss) = ∆log(µY ).

Consequence 4. By definition, a system has feedback control if the presence of feedback reduces the effect of the
perturbation over the controlled species change, i.e. |∆log(Yss)| < |∆log(µY )|. Then, in order to have feedback
control, ∆log(WT,ss) < 0 if ∆log(µY ) > 0 (and vice versa). It follows that in range of µY values with effective
feedback control, WT,ss must decrease monotonically as µY value increases.

Proposition 6. For the system described in Eqs. S3-S5,S7, if (γ + γW ) > 0, the total W steady state
(WT,ss = Wss +Css) has an upper limit and lower limit, independent of µY . Additionally, WT,ss approaches its upper
limit when Wss ≈WT,ss, and its lower limit when Css ≈WT,ss.

Proof. Let’s define total W as the sum of free molecule W and the complex molecule C, i.e. WT = W + C. Then,
the equation of change of WT corresponds to the sum of Eq. S4 and Eq. S5:

d

dt
WT =

d

dt
W +

d

dt
C

= µW − (γ + γW )(W + C)− η−C (S32)
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Without loss of generality, we represent C as a fraction of the total W , αWT with α ∈ [0, 1]:

d

dt
WT = µW − (γ + γW + αη−)WT (S33)

Then, at steady state:

WT,ss =
µW

γ + γW + αη−
(S34)

Given that all involved parameters are non-negative, and α ∈ [0, 1]:

µW
γ + γW + η−

≤ µW
γ+γW+αη−

≤ µW
γ + γW

µW
γ + γW + η−

≤ WT,ss ≤ µW
γ + γW

(S35)

Notice that the upper limit exists only if (γ + γW ) > 0. Moreover, it is clear that WT,ss approaches its upper limit
when α→ 0, i.e. WT,ss ≈Wss, while WT,ss approaches its lower limit when α→ 1, i.e. WT,ss ≈ Css.

Proposition 7. For the system described in Eqs. S3-S5,S7 and within the range of µY for which the feedback is
effective (i.e. |∆log(Yss)| < |∆log(µY )|), CoRaΘ(Y, µY )→ 1 as µY decreases, provided that (γ + γW ) > 0.

Proof. By Consequence 4, in the range of effective feedback control, WT,ss value increases as the µY value (before
a perturbation is applied) decreases. Therefore, as the µY value decreases, WT,ss approaches its limit, µW

γ+γW

(Eq. S35). Therefore, the potential increment to its concentration (∆log(WT,ss)) after a perturbation that decreases
µY value even further (i.e. ∆log(µY ) < 0) is constrained by the WT,ss proximity to the limit. With some abuse of
notation, we use the symbol ≈ to denote the situation in which the limit is taken as Wss approaches its upper bound.
In this regime, WT,ss ≈ µW

γ+γW
and ∆log(Wss) ≈ 0. Using Eq. S31 and Consequence 3,

CoRaΘ(Y, µY ) =
∆log(Yss)

∆log(Yss,NF)

=
∆log(µY) + ∆log(WT,ss)

∆log(µY)

≈ ∆log(µY)

∆log(µY)

≈ 1 (S36)

Proposition 8. For the system described in Eqs. S3-S5,S7, and within a range in which the feedback is effective
(i.e. |∆log(Yss)| < |∆log(µY )| for all µY values within the range), CoRaΘ(Y, µY )→ 1 as µY increases.

Proof. By Consequence 4 above, in a range of µY values with effective feedback control, WT,ss value decreases as
the µY value (before a perturbation is applied) increases. Therefore, as the µY value increases, WT,ss approaches its
limit, µW

γ+γW+η−
(Eq. S35). Then the potential reduction on its concentration (∆log(WT,ss)) after a perturbation that

increases µY value even further (i.e. ∆log(µY ) > 0) is constrained by the WT,ss proximity to the limit. Then as the
µY value (before a perturbation is applied) increases, such that WT,ss ≈ µW

γ+γW+η−
and ∆log(Wss) ≈ 0 (with the

same abuse of notation highlighted above as to limits), using Eq. S31 and Consequence 3,

CoRaΘ(Y, µY ) =
∆log(Yss)

∆log(Yss,NF)

=
∆log(µY) + ∆log(WT,ss)

∆log(µY)

≈ ∆log(µY)

∆log(µY)

≈ 1 (S37)
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Notice this limit exists even if W and U are lost only through their mutual annihilation (i.e. γ, γW , γU = 0), as the
active degradation is not spontaneous (i.e. 0 < η− <∞).

It must be emphasized that the control limits described above depend directly on the specific subsystem being
controlled, and that analytical intuitive expressions might not always be feasible. Nevertheless, CoRa has the
advantage of not having to rely on this knowledge.

S4 Negative auto-regulation affecting synthesis represented by
Michaelis-Menten function limits control performance in multiple
motifs, but is alleviated by ultrasensitivity.

Using CoRa, we efficiently compared four distinct feedback control motifs proposed in the literature [4,5,8,14] (Fig. 3;
see Section S5 for for equations and parameter values). For comparison on equal footing, we considered each of these
different negative feedback structures controlling the same simple biochemical subsystem. These investigations using
CoRa can generate a rich data-set to explore the properties of different molecular implementations associated with the
same phenomenological macroscopic function –negative auto-regulation. For example, we observed that the feedback
strategies employing repression of synthesis modelled using a standard Michaelis-Menten repression function (Fig.
3B-C) displayed a limit of CoRaΘ(Y, µY ) ≥ 0.5. This behavior relates to the inevitable saturation of the repression
function (see Section S4.1 for an example of an analytical treatment of this limit). A notable exception to this limit
occurred for the “brink motif” feedback strategy, a motif that combines antithetic molecular sequestration with an
activation-deactivation enzymatic cycle to produce a tuneable ultra-sensitive response [8] (Fig. 3D; see Section S5.4).

These patterns that were computationally pinpointed by the CoRa analysis prompted the hypothesis that adding
ultra-sensitivity to motifs with Michaelis-Menten synthesis repression might alleviate the limit of their adaptive
behaviors. Using CoRa, we tested this hypothesis by adding a Hill coefficient larger than 1 to the Michaelis-Menten

function in different strategies (f�(Y ) = µ�
Kn
D

Y n+Kn
D

, where µ� is the maximum synthesis rate, KD is the EC50, and

n is the Hill coefficient). By increasing the system ultrasensitivity with the Hill coefficient, the lower bound of the
CoRa line decreased in all cases, indicating improved adaptation capabilities of the control loops. For instance, with
µY = 1min−1, we get CoRaΘ(Y, µY ) = {0.5235, 0.0920, 0.0100} for both the Negative Feedback + Feed-forward loop
(FFL) model and Buffering + Negative Feedback (BNF) model with Hill coefficient n = {1, 10, 100}, respectively (all
other parameters as in Fig. 3B and Fig. 3C, respectively; see Section S6). Furthermore, increasing the
ultrasensitivity of the brink motif (BMF) itself by increasing either the Hill coefficient (with µY = 1min−1,
CoRaΘ(Y, µY ) = {0.2996, 0.1113, 0.0240} with Hill coefficient n = {1, 10, 100}, respectively) or the deactivation rate
in its enzymatic cycle [8] (with µY = 10min−1, CoRaΘ(Y, µY ) = {0.4179, 0.1188, 0.0612} with deactivation rate
βI = {0.5, 5, 50}nM−1min−1, respectively) improved its ability to adapt (all other parameters as in Fig. 3D; see
Section S6). We corroborate that, as shown by Samaniego & Franco [8], the BMF motif displays high ultrasensitivity,
and the ultrasensitivity increases as βI increases. In all cases, higher ultrasensitivity (either by increasing the Hill
coefficient n or βI for BMF) results in improved control performance for some range of µY values (CoRaΘ(Y, µY )
approaching zero). These results strongly suggest that feedback strategies based on Michaeliean repression of
synthesis are severely limited in their capacity for homeostasis, but can be improved using ultra-sensitive components.

In this case, CoRa was used as a computational hypothesis generator about this general principle, which was then
confirmed through further computational and analytical investigations.

S4.1 Understanding effect of saturation on buffering + negative feedback control
strategy

System proposed in Hancock et al. (2017) Hancock et al. (2017) explored a simple model proposed to
display perfect adaptation. This system consisted of only two species, one working as a buffer of the other while
inhibiting its own synthesis (i.e. negative feedback). The equations of this control strategy with a the simple
controlled subsystem used in this paper are:

d

dt
Y = (µY − kY )− βY + βPUP − γY Y (S38)

15/22



d

dt
UP = βY − βPUP − γUPUP (S39)

where µY is the maximum synthesis rate of Y , β and βP are inactivation and activation rates respectively, UP
represents the inactive form of Y , γY and γUP are the degradation rates of Y and UP , respectively, and k is
inhibition rate of Y over its own synthesis.

At steady state,

UP,ss =
βYss

βP + γUP
(S40)

Yss =
µY

k + β − β βP
βP+γUP

+ γY
(S41)

Then, assuming βP � γUP , Yss is controlled with a reference value µY
k+γY

.

We consider a modified implementation of this buffering + negative feedback (BNF) control motif where the
feedback has an additional intermediate step:

d

dt
Y = µY U − (γ + γY )Y (S42)

d

dt
U = f(Y )− (γ + γU )U − βU + βPUP (S43)

d

dt
UP = −(γ + γUP )UP + βU − βPUP (S44)

The steady state solution for U and UP is:

Uss = Yss

(γ + γY
µY

)
(S45)

UP,ss =
βUss

γ + γUP + βP
(S46)

For Y , in the case where f(Y ) = µU − kY is a linear function:

Yss = µU
µY

µY k + (γ + γU + β)(γ + γY )− β(γ + γY ) βP
γ+γUP +βP

(S47)

If we assume that γ + γUP ≈ 0, then Eq. S47 is reduced to:

Yss = µU
µY

µY k + (γ + γU )(γ + γY )
(S48)

The system has perfect adaptation only if µY k � (γ + γU )(γ + γY ), in which case the reference value is µU
k .

In the case where f(Y ) = µU
KD

KD+Y is a Michaelis-Menten function, steady state solution for Y is:

Yss =

−KD +

√
K2
D + 4KD

(
µY
γ+γY

)(
µU
γ+γU

)(
γ+γU+βP

β+γ+γU+βP

)
2

=
(KD

2

)
(−1 +

√
1 + a · µY ) (S49)

with a :=
(

4
KD

)(
1

γ+γY

)(
µU
γ+γU

)(
γ+γU+βP

β+γ+γU+βP

)
. This steady state expression already suggests that perturbations to

µY cannot be perfectly controlled anymore. Moreover, we show below that regardless of the parameter values, BNF
with a Michaelis-Menten function describing the negative regulation has CoRaΘ(Y, µY ) > 0.5.

The corresponding locally analogous system without feedback maintains the same ODE equations (Eq. S42 and
Eq. S44), with the exception of dU

dt ,

d

dt
U = f(Y∗)− (γ + γU )U − βU + βPUP (S50)
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where U synthesis rate now depends on a new molecule Y∗ with dynamics

d

dt
Y∗ = µY ∗ − (γ + γY ∗)Y∗ (S51)

such that, for each parameter set Θ, Y∗ is constitutively expressed with synthesis µY ∗ equal to Y synthesis rate in the
pre-perturbation steady state solution (i.e. µY ∗ = µY U), and degradation rate γY ∗ = γY . Then, with
f(Y∗) = µY

KD
KD+Y∗

, the controlled species steady state solution Yss,NF for this locally analogous system without
feedback is:

Yss,NF =
( KD

( µY ∗
γ+γY ∗

) +KD

)( µY
γ + γY

)( µU
γ + γU

)( γ + γU + βP
β + γ + γU + βP

)
=

( KD(γ + γY ∗)

µY ∗ +KD(γ + γY ∗)

)(KD

4

)
· a · µY (S52)

Control limits Using Eq. S49 and Eq. S52, the CoRa value for a small perturbation on µY (µY → µ′Y ) is
calculated as,

CoRaΘ(Y, µY ) =
log
(

(
KD

2 )(−1+
√

1+a·µ′Y )

(
KD

2 )(−1+
√

1+a·µY )

)
log
(

(
KD(γ+γY ∗)

µY ∗+KD(γ+γY ∗)
)(
KD

4 )a·µ′Y
(

KD(γ+γY ∗)
µY ∗+KD(γ+γY ∗)

)(
KD

4 )a·µY

)

=
log
(
−1+
√

1+a·µ′Y
−1+

√
1+a·µY

)
log(

µ′Y
µY

)
(S53)

First, we show that CoRaΘ(Y, µY ) decreases monotonically as the µY value (before the perturbation) increases
(i.e. dCoRaΘ(Y, µY )/dµY < 0). In order to evaluate the derivative of CoRa, we first need to derive the continuous
form of the CoRa function (CoRaC), which corresponds to CoRa evaluated in the limit as the perturbation size
(∆µY , with µ′Y = µY + ∆µY ) approaches zero,

CoRaCΘ(Y, µY ) = lim∆µY→0(CoRaΘ(Y, µY ))

=
log
(
−1+
√

1+a·(µY +∆µY )

−1+
√

1+a·µY

)
log( (µY +∆µY )

µY
)

|lim∆µY→0

=
log(−1 +

√
1 + a · (µY + ∆µY ))− log(−1 +

√
1 + a · µY )

log((µY + ∆µY ))− log(µY )
|lim∆µY→0

=

log(−1+
√

1+a·(µY +∆µY ))−log(−1+
√

1+a·µY )

∆µY
log((µY +∆µY ))−log(µY )

∆µY

|lim∆µY→0

=

d
dµY

log(−1 +
√

1 + a · µY )
d

dµY
log(µY )

=
1

2

(
1 +

1√
1 + a · µY

)
(S54)

Then,

d

dµY
CoRaCΘ(Y, µY ) =

d

dµY

(1

2

(
1 +

1√
1 + a · µY

)
= − a

4(1 + a · µY )
3
2

< 0 (S55)

17/22



As all parameters are positive (i.e. a > 0 and µY > 0), this derivative is always negative.
From Eq. S53, it is easy to see that as the µY value (before the perturbation) increases, with (a · µY )� 1, such

that (−1 +
√

1 + a · µY ) ≈ √a · µY , then

CoRaΘ(Y, µY ) ≈
log
(

(a·µ′Y )0.5

(a·µY )0.5

)
log(

µ′Y
µY

)

≈
0.5 log(

µ′Y
µY

)

log(
µ′Y
µY

)

≈ 0.5 (S56)

It follows that regardless of the parameter values, BNF with a Michaelis-Menten function describing the negative
synthesis regulation has CoRaΘ(Y, µY ) > 0.5.

S4.2 Feedback effectiveness metric, control saturation and ultrasensitivity

The feedback effectiveness metric (FE) proposed by Savageau [10] (see Section S1) also allows for a structural
explanation for the observation described above. In the work in [10], they consider a general end-product feedback
regulatory system, represented with a system of differential equations in the S-system form

d

dt
Xi = αiΠ

m
j=0X

gi,j
j − βiΠm

j=0X
hi,j
j (S57)

where gi,j , hi,j are the “apparent kinetic orders” of the rate terms of species Xj with respect to the species Xi, and

αi, βi ∈ R0+. They show that for this system FE = −g1,m
Πg
Πh , where g1,m represents the apparent kinetic order of

the regulatory effect of the “last” species (i.e. output, Xm) over the “first” species (i.e.input, X1) in the regulatory
feedback loop, and Πg,Πh are the product of all the other apparent kinetic order that compose the cascade in the
feedback regulatory loop for the positive and negative effector species, respectively (see [10] for full derivation). In
the case of a feedback control system, the feedback loop must be negative, and then g1,m

Πg
Πh < 0 and FE > 0,

corresponding to CoRa = 1
1+FE < 1 as expected (see Section S2). In the simple case that all apparent kinetic order

of the regulatory effectors are equal to one (i.e. first order mechanisms) except for a Michaelis-Menten repression
function (e.g. 0 > g1,m ≥ −1), 0 < FE ≤ 1, resulting in 1 > CoRa ≥ 0.5. If an ultrasensitive repression function is
considered instead (i.e. with a Hill coefficient n > 1), FE scales with the ultrasensitivity level, reducing then the
lower limit expected for the respective CoRa value. For example, with g1,m ≤ −2, FE ≥ 2 and CoRa ≤ 1

3 .
Noteworthy, the apparent kinetic order will depend both of the associated Hill coefficient and the value of the EC50

parameter relative to the steady state concentration of the effector species. This is in clear agreement with the limit
observed for the control efficiency of the FFL and BNF systems (CoRa ≥ 0.5; Fig. 3B and Fig. 3C) with a
Michaelis-Menten repressive function, which is then alleviated by the addition of ultrasensitivity.

S5 Comparing Feedback Control Motifs with CoRa

For all systems below, Y represents the controlled species of interest.

S5.1 Feedback by Active Degradation + Positive Feedback with inactive complex

We consider the feedback by active degradation motif with the addition of a positive feedback (FDP; Fig. 3A; [3, 14]),
i.e. W induces its own synthesis. Here we assume that W retains its transcription factor activity until degraded,

d

dt
U = µUY − (γ + γU )U − η+UW + (η0 + γW + η−)C (S58)

d

dt
W = µW

( (W + C)

(W + C) +KD

)
− (γ + γW )W − η+UW + (η0 + γU )C (S59)
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d

dt
C = η+UW − (γ + η0 + η− + γU + γW )C (S60)

d

dt
Y = µY (W + C)− (γ + γY )Y (S61)

Here all species are subject to loss by dilution (γ), in addition of their own individual degradation rates (γ�), µ�

represents the synthesis rate for each molecule, KD is the Michaelis-Menten constant for W auto-regulation, and η−
is the active degradation rate of W in the complex form C; η+ is the binding rate of U and W (forming the complex
C); and η0 is the spontaneous unbinding rate of these two molecules (dissociating the complex C).

The corresponding locally analogous system without feedback maintains the same ODE equations (Eq. S59-S61),
with the exception of dU

dt ,

d

dt
U = µUY∗ − (γ + γU )U − η+UW + (η0 + γW + η−)C (S62)

where U synthesis rate now depends on a new molecule Y∗ with dynamics

d

dt
Y∗ = µY∗ − (γ + γY∗)Y∗ (S63)

For each parameter set Θ, Y∗ is constitutively expressed with synthesis µY ∗ equal to Y synthesis rate in the
pre-perturbation steady state solution (i.e. µY ∗ = µY (Wss + Css)), and degradation rate γY ∗ = γY .

S5.2 Feedback + Feedforward Loop

We consider a motif with negative feedback and a coherent feed-forward loop (FFL; Fig. 3B), similar to the one
proposed in Harris et al. [5], where Y represses the synthesis of U , and U induces the synthesis of both Y and W ,
which in turns also induces Y synthesis:

d

dt
U = µU

( KD

Y +KD

)
− (γ + γU )U (S64)

d

dt
W = µWU − (γ + γW )W (S65)

d

dt
Y = µY (U +W )− (γ + γY )Y (S66)

Here all species are subject to loss by dilution (γ), in addition of their own individual degradation rates (γ�), and µ�

represents the synthesis rate for each molecule.
The corresponding locally analogous system without feedback maintains the same ODE equations (Eq. S65-S66),

with the exception of dU
dt ,

d

dt
U = µU

( KD

Y∗ +KD

)
− (γ + γU )U (S67)

where U synthesis rate now depends on a new molecule Y∗ with dynamics

d

dt
Y∗ = µY∗ − (γ + γY∗)Y∗ (S68)

For each parameter set Θ, Y∗ is constitutively expressed with synthesis µY ∗ equal to Y synthesis rate in the
pre-perturbation steady state solution (i.e. µY ∗ = µY (Uss +Wss)), and degradation rate γY ∗ = γY .

S5.3 Buffering + Negative Feedback

We consider a motif with negative feedback and a buffering loop (BNF; Fig. 3C), similar to the one proposed in
Hancock et al. [4], where Y represses the synthesis of U , and U transitions to an alternative state UP and vice versa:

d

dt
U = µU

( KD

Y +KD

)
− (γ + γU )U − βU + βPUP (S69)

d

dt
UP = −(γ + γU )UP + βU − βPUP (S70)
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closing the feedback with either UP inducing Y synthesis:

d

dt
Y = µY UP − (γ + γY )Y (S71)

Here all species are subject to loss by dilution (γ), in addition of their own individual degradation rates (γY for Y ,
and γU for both U and UP ), µU is the maximum synthesis rate of U (in absence of Y ), µY is the synthesis rate of Y
(depending on UP , Eq. S71), and β, βP are the transition rates from U to UP , and viceversa.

The corresponding locally analogous system without feedback maintains the same ODE equations (Eq. S70-S71),
with the exception of dU

dt ,

d

dt
U = µU

( KD

Y∗ +KD

)
− (γ + γU )U − βU + βPUP (S72)

where U synthesis rate now depends on a new molecule Y∗ with dynamics

d

dt
Y∗ = µY∗ − (γ + γY∗)Y∗ (S73)

For each parameter set Θ, Y∗ is constitutively expressed with synthesis µY ∗ equal to Y synthesis rate in the
pre-perturbation steady state solution (i.e. µY ∗ = µY UP,ss), and degradation rate γY ∗ = γY .

S5.4 Brink Motif Feedback

We consider a simple version of the Brink motif (BMF; Fig. 3D) proposed by Samaniego & Franco [8], where A and I
bind and annihilate each other (by creating the complex C), A induces the activation of U (UP to U), while I
induces its inactivation (U to UP ), and U induces the synthesis of Y :

d

dt
C = −γC + η+AI − η0C + βAAUP (S74)

d

dt
U = µU − γU + βAAUP − βIIU (S75)

d

dt
UP = −γUP − βAAUP + βIIU (S76)

d

dt
Y = µY U − (γ + γY )Y (S77)

With Y repressing the synthesis of A,

d

dt
A = µA

( KD

Y +KD

)
− γA− η+AI + η0C − βAAUP (S78)

d

dt
I = µI − γB − η+AI + η0C − βIIU (S79)

Here all species are subject to loss by dilution (γ), µ� represents the synthesis rate for each molecule (except UP ,
which is only created by the inactivation of U), η+ is the binding rate of A and I (forming the complex C), η0 is the
spontaneous unbinding rate of these two molecules (dissociating the complex C); βA, βI are the activation and
inactivation rates of U , respectively; and KD is the Michaelis-Menten constant for the transcriptional repression by Y .

The corresponding locally analogous system without feedback maintains the same ODE equations (Eq. S74-S76,
and Eq. S79), with the exception of dA

dt ,

d

dt
A = µA

( KD

Y∗ +KD

)
− γA− η+AI + η0C − βAAUP (S80)

where A synthesis rate now depends on a new molecule Y∗ with dynamics

d

dt
Y∗ = µY∗ − (γ + γY∗)Y∗ (S81)

such that Y∗ is constitutively expressed with synthesis µY ∗ equal to Y synthesis rate in the steady state solution for
each parameter set Θ (i.e. µY ∗ = µY Uss), and degradation rate γY ∗ = γY , before the perturbation.
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S6 Parameter values and models used in the manuscript figures

Fig. 2C

• Model: ATF v1 & v2 (Section S3)

• Parameter values: γ = 1× 10−4min−1, γU = 1× 10−4min−1, γW = 1× 10−4min−1, µU = 0.125min−1,
µW = 0.1nM min−1, η0 = 1× 10−4min−1, η+ = 0.0375nM−1min−1, η− = 0.5min−1, γY = 1min−1

Fig. 2D

• Model: ATF v1 & v2 (Section S3)

• Parameter values: γ = 1× 10−4min−1, γU = 1× 10−4min−1, γW = 1× 10−4min−1, µU = 0.125min−1,
µW = 0.1nM min−1, η0 = 1× 10−4min−1, η+ = 0.0375nM−1min−1, µY = 0.125min−1, γY = 1min−1

Fig. 3A

• Model: FDP (Section S5.1)

• Parameter values: γ = 0.01min−1, γU = 0.05min−1, γW = 1× 10−4min−1, µU = 0.125min−1,
η0 = 1× 10−4min−1, η+ = 0.0375nM−1min−1, η− = 0.5min−1, KD = 0.02nM , γY = 0.1min−1,
µW = 0.333nM min−1 (black line; Y ≈ 10nM for µY = 1min−1).

Fig. 3B

• Model: FFL (Section S5.2)

• Parameter values: γ = 0.01min−1, γU = 1× 10−4min−1, µU = 2min−1, KD = 1nM , γY = 0.1min−1,
β = 0.0108min−1, βP = 0.1565min−1 (black line; Y ≈ 10nM for µY = 1min−1).

Fig. 3C

• Model: BNF (Section S5.3)

• Parameter values: γ = 0.01min−1, γU = 1× 10−4min−1, µU = 2min−1, KD = 1nM , γY = 0.1min−1,
β = 0.0108min−1, βP = 0.1565min−1 (black line; Y ≈ 10nM for µY = 1min−1).

Fig. 3D

• Model: BMF (Section S5.4)

• Parameter values: γ = 0.01min−1, µU = 0.1nM min−1, η0 = 1× 10−4min−1, η+ = 0.05nM−1min−1,
βA = 0.5nM−1min−1, βI = 0.5nM−1min−1, γY = 0.1min−1, µA = 0.372nM min−1, KD = 1nM ,
µI = 0.125nM min−1 (black line; Y ≈ 10nM for µY = 1min−1).
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