In the format provided by the authors and unedited.

Modular and tunable biological feedback control using a de novo protein switch

Andrew H. Ng^{1,2,3,4}, Taylor H. Nguyen¹, Mariana Gómez–Schiavon¹, Galen Dods¹, Robert A. Langan^{5,6,7}, Scott E. Boyken^{5,6}, Jennifer A. Samson², Lucas M. Waldburger², John E. Dueber², David Baker^{5,6,8} & Hana El–Samad^{1,4,9}*

¹Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA. ²Department of Bioengineering, University of California, Berkeley, CA, USA. ³The UC Berkeley–UCSF Graduate Program in Bioengineering, UC Berkeley, Berkeley, CA, USA. ⁴Cell Design Initiative, University of California, San Francisco, CA, USA. ⁵Department of Biochemistry, University of Washington, Seattle, WA, USA. ⁶Institute for Protein Design, University of Washington, Seattle, WA, USA. ⁷Graduate Program in Biological Physics, Structure, and Design, University of Washington, Seattle, WA, USA. ⁸Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA. ⁹Chan–Zuckerberg Biohub, San Francisco, CA, USA. *e-mail: hana.el-samad@ucsf.edu

Modular and tunable biological feedback control using a *de novo* protein switch SUPPLEMENTARY INFORMATION

1 Model description

We describe below the computational model used to generate all plots in the manuscript.

1.1 Species

- G : degSwitch-transcription factor (e.g. degSwitch-GEM)
- Z : Transcription factor (e.g. ZPM)
- $\bullet~K$: Key
- $\bullet\ C$: Key-degSwitch-transcription factor complex
- Y_* : "Immature" output (e.g. immature YFP)
- Y : Output (e.g. mature YFP)

Note: For simplicity and readability, in the model analysis and figures we omit the square brackets when referring to the concentration of these species.

1.2 Parameters

- μ_G ([nM/min]) : Constitutive synthesis rate of G
- γ_G ([1/min]) : Degradation/loss rate of free G (i.e. leaky degradation)
- η_+ ([1/(nM min)]) : Binding rate of G and K
- η_0 ([1/min]) : Unbinding rate of G and K
- η_- ([1/min]): Active degradation rate of G in the complex form (i.e. $C \to K$)
- $f_Z(G+C, E)$ ([nM/min]) : Synthesis rate of Z regulated by G and E (e.g. $\mu_Z \cdot (G+C) \cdot E$)
- E([nM]): Co-factor of G to regulate Z synthesis (e.g. oestradiol)
- γ_Z ([1/min]) : Degradation/loss rate of Z
- $f_K(X, P)$ ([nM/min]) : Synthesis rate of K regulated by Z and P (e.g. $\mu_K \cdot X \cdot P$)
- P([nM]): Co-factor of Z to regulate K synthesis (e.g. progesterone)
- γ_K ([1/min]) : Degradation/loss rate of K and C
- $f_Y(X, P)$ ([nM/min]) : Synthesis rate of Y regulated by Z and P (e.g. $\mu_Y \cdot X \cdot P$)
- γ_Y ([1/min]) : Degradation/loss rate of Y
- κ_+ ([1/min]) : Maturation rate of Y_*

ODE system 1.3

$$\frac{d}{dt}G = \mu_G - \gamma_G G - \eta_+ G K + \eta_0 C \tag{1}$$

$$\frac{d}{t}Z = f_Z(G+C,E) - \gamma_Z Z \tag{2}$$

$$\frac{dt}{dt}Z = f_Z(G+C,E) - \gamma_Z Z$$

$$\frac{d}{dt}K = f_K(Z,P) - \gamma_K K - \eta_+ GK + (\eta_0 + \eta_-)C$$
(3)

$$\frac{d}{dt}C = -\gamma_K C + \eta_+ GK - (\eta_0 + \eta_-)C \tag{4}$$

$$\frac{d}{dt}Y_* = f_Y(Z, P) - \gamma_Y Y_* - \kappa_+ Y_*$$
(5)

$$\frac{d}{dt}Y = \kappa_+ Y_* - \gamma_Y Y \tag{6}$$

$\mathbf{2}$ Qualitative properties

Notice that in this system (Eqs. 1-5), total K concentration (i.e. $K_T = K + C$) and output Y_T are given by:

$$\frac{d}{dt}K_T = \frac{d}{dt}(K+C) = f_K(Z,P) - \gamma_K(K+C)$$
(7)

$$\frac{d}{dt}Y_T = \frac{d}{dt}(Y_* + Y) = f_Y(Z, P) - \gamma_Y(Y_* + Y)$$
(8)

assuming $f_K(Z, P)$ and $f_Y(Z, P)$ have similar qualitative form (e.g. $f_K(Z, P) \propto f_Y(Z, P)$), then K_T and Y_T have analogous functional form.

At steady state :

$$\frac{d}{dt}G = 0 \quad \Leftrightarrow \quad G_{ss} = \frac{\mu_G + \eta_0 C_{ss}}{\gamma_G + \eta_+ K_{ss}} \tag{9}$$

$$\frac{d}{dt}C = 0 \quad \Leftrightarrow \quad C_{ss} = \frac{\eta_+ G_{ss} K_{ss}}{\gamma_K + \eta_0 + \eta_-}$$

$$\Rightarrow \quad C_{ss} = \frac{\mu_G K_{ss}}{\gamma_G(\frac{\gamma_K + \eta_0 + \eta_-}{\eta_+}) + K_{ss}(\gamma_K + \eta_-)} \tag{10}$$

Then, when $K_{ss} \gg \frac{\gamma_G(\gamma_C + \eta_0 + \eta_-)}{\eta_+(\gamma_C + \eta_-)}$, the $C_{ss} \approx \frac{\mu_G}{\gamma_K + \eta_-}$. This occurs regardless of the specific form of $\frac{d}{dt}K$, and in particular the presence or absence of feedback. This is actually an important limit in the control system, as the feedback action occurs through and only through C formation, and this is a required step for active degradation –and then the feedback– to occur. For example, consider that $f_K(z, P)$ is an increasing function of Z and P and consider a positive disturbance implemented through an increase in P: initially, as P increases, K synthesis increase, potentially increasing C and then the effective active degradation of G. Once G decreases, the synthesis of Z will decrease accordingly, decreasing then K synthesis, i.e. "compensating" for the increment on P. Nevertheless, if C has reached its maximum value $(\lim_{K\to\infty} C = \frac{\mu_G}{\gamma_K + \eta_-})$, increasing K does not have an effect on G degradation, and the feedback is effectively broken.

2.1Basal activity & saturation on synthesis functions

We incorporate the complexity of the synthesis process by using a Hill-type function as the synthesis function for each of the regulated genes:

$$f_Z(G+C,E) = \mu_Z \left(\alpha_Z + (1-\alpha_Z) \frac{(E \cdot (G+C))^{n_Z}}{(E \cdot (G+C))^{n_Z} + K_Z^{n_Z}} \right)$$
(11)

$$f_K(Z, P) = \mu_K \left(\alpha_K + (1 - \alpha_K) \frac{(P \cdot Z)^{n_K}}{(P \cdot Z)^{n_K} + K_K^{n_K}} \right)$$
(12)

$$f_Y(Z, P) = \mu_Y \left(\alpha_Y + (1 - \alpha_Y) \frac{(P \cdot Z)^{n_K}}{(P \cdot Z)^{n_K} + K_K^{n_K}} \right)$$
(13)

where $\{\mu_Z, \mu_K, \mu_Y\}$ represent the maximum synthesis rates, $\{\alpha_Z \mu_Z, \alpha_K \mu_K, \alpha_Y \mu_Y\}$ the basal synthesis rates, $\{n_Z, n_K, n_Y\}$ the Hill coefficients, and $\{K_Z, K_K, K_Y\}$ the activation thresholds relative to the active regulators (i.e. transcription factor and co-factor complex) for $\{Z, K, Y\}$ synthesis rate functions, respectively. We assume that the Hill coefficient and activation threshold are the same for K and Y synthesis function, as they are both regulated by Z and P; the maximum and basal synthesis rate are expected to depend more strongly on the gene sequence, and then we allow them to differ. When the feedback is removed, $f_K = \mu_{K*}$, where μ_{K*} represents the constitutive synthesis rate of K.

The Hill function is often used as a phenomenological description of gene regulation. Nevertheless, regardless of the specific form of $\{f_Z, f_K, f_Y\}$ functions, a basal and a maximum synthesis rate are expected for every gene. The functions in Eqs. 11-13 allow us to explore the effect of these limits.

Extended Data Figure 3a shows an example of the steady state results for different values of P using this model (Eqs. 11-13). As expected, the feedback is active only when C is neither too small nor too high. We define the feedback as "active" whenever the relative change in total G ($G_T = G + C$) over the relative change of the P-disturbance is higher than an arbitrary threshold (e.g. $\epsilon = 0.15$):

$$\frac{(\Delta G_T)/G_T}{(\Delta P)/P} \ge \epsilon \tag{14}$$

Feedback directly changes the amount of G_T , thus this metric is useful because the amount of feedback is correlated to the sensitivity of G_T to the *P*-disturbance. The value of ΔG_T as well as the metric in Eq. 14 are equal to zero in an system without feedback.

Similar to perturbing the system by increasing the concentration of P, it is possible to test the feedback action by perturbing the degradation rate of Z (see Figure 3b in the main text). Extended Data Figure 3b shows that this "negative" perturbation has a similar response compared to the previous "positive" perturbation (Extended Data Figure 3a), just changing the direction of the effect of the perturbation (i.e. Z increases as γ_Z increases, to "compensate" for the faster degradation of X). Once again, the feedback control is active (substituting $\Delta(P)/P$ by $\Delta(\gamma_Z)/\gamma_Z$ in Eq. 14) when C has not reach saturation and its concentration is high enough to contribute significantly to the degradation of G_T .

2.2 Tuning the feedback efficiency

Extended Data Figure 7 shows a few examples of how steady state solution and feedback "activity" regime varies as either η_+ or μ_K change. In both cases, decreasing the parameter value initially shifts the feedback "activity" regime towards higher *P*-disturbance values (*Extended Data Figure* 7*c-d*), and eventually breaks the feedback reducing both the range and magnitude of the feedback activity (as defined by Eq. 14). Nevertheless, for high values of η_+ , the sensitivity of G_T increases dramatically, compared to high values of μ_K , where the feedback actually saturates and eventually breaks. Therefore, systems with higher η_+ can potentially result in a stronger and more efficient feedback. Nevertheless, *Extended Data Figure 7a* shows an example where the feedback activity occurs where the output Y expression is very close to its basal value, making the benefit of this increment of η_+ almost imperceptible (compare black and purple continuous lines in *Extended Data Figure 7a*). In this case, decreasing the basal expression of Y would be enough to reveal the feedback action on this system. This example highlights the advantage of defining this model to do a full tuning of the experimental system.

Table : Simulation parameter values in Figures & Extended Data Figures

							-		V	$\mathbf{\Gamma}$	
	μ_G	γ_G	η_+	η_0	η_{-}	μ_Z	α_Z	n_Z	n_Z	Ŀ	γ_Z
Fig.	nM	\min^{-1}	nM^{-1}	\min^{-1}	\min^{-1}	nM			nM	nM	\min^{-1}
	\min^{-1}		\min^{-1}			\min^{-1}					
3b	0.006	0.02	0.0375	1E-4	0.05	11	1E-6	2.2	36	7.5	0.01
4a	0.006	0.02	0.0375^{*}	1E-4	0.05	11	1E-6	2.2	36	7.5	0.01
E3a	0.006	0.02	0.0375	1E-4	0.05	11	1E-6	2.2	36	7.5	0.01
E3b	0.006	0.02	0.0375	1E-4	0.05	11	1E-6	2.2	36	30	0.01
E7a,c	0.006	0.02	0.0375^\dagger	1E-4	0.05	11	1E-6	2.2	36	7.5	0.01
E7b,d	0.006	0.02	0.0375	1E-4	0.05	11	1E-6	2.2	36	7.5	0.01
<u> </u>											
	μ_K	α_K	n_K	K_K	Р	γ_K	μ_{K*}^{\ddagger}	μ_Y	α_Y	γ_Y	κ_+
Fig.	$ \mu_K $ nM	α_K	n_K	K_K nM	P nM	γ_K min ⁻¹	${\mu_{K*}}^{\ddagger}$ nM	μ_Y nM	α_Y	$\gamma_Y \ { m min}^{-1}$	$\frac{\kappa_+}{\min^{-1}}$
Fig.	$\frac{\mu_K}{\text{nM}}$ \min^{-1}	α_K	n_K	K _K nM	P nM	$\frac{\gamma_K}{\min^{-1}}$	$\frac{\mu_{K*}^{\ddagger}}{\text{nM}}$ \min^{-1}	$\frac{\mu_Y}{\text{nM}}$ \min^{-1}	α_Y	$\frac{\gamma_Y}{\min^{-1}}$	$\frac{\kappa_+}{\min^{-1}}$
Fig.	$\frac{\mu_K}{\text{min}^{-1}}$	α _K 1E-5	2.6	$\frac{K_K}{\text{nM}}$ 12	$\frac{P}{\text{nM}}$ $[0.8,3]^{\dagger}$	$\frac{\gamma_K}{\min^{-1}}$	$ \frac{\mu_{K*}^{\ddagger}}{\text{nM}} $ $ \min^{-1} $ $ 0.0028 $	$\begin{array}{c} \mu_Y \\ \text{nM} \\ \text{min}^{-1} \\ 0.75 \end{array}$	α _Y 0.03	$\frac{\gamma_Y}{\min^{-1}}$	$\frac{\kappa_+}{\min^{-1}}$
Fig. 3b 4a	$\frac{\mu_K}{\text{nM}}$ $\frac{\text{nM}}{\text{min}^{-1}}$ $\frac{2}{2^*}$	α_K 1E-5 1E-5	$\begin{array}{c} n_K \\ \hline 2.6 \\ 2.6 \end{array}$	$ \begin{array}{c} K_K \\ nM \\ 12 \\ 12 \end{array} $	$\begin{array}{c} P \\ nM \\ \hline \\ [0.8,3]^{\dagger} \\ \dots^{\dagger} \end{array}$	$\frac{\gamma_K}{\min^{-1}}$ 0.01 0.01	$ \frac{\mu_{K*}^{\ddagger}}{\text{nM}} $ nM $ \min^{-1} $ 0.0028 5E-4	μ_Y nM min ⁻¹ 0.75 0.75	$\begin{array}{c} \alpha_Y \\ \hline \\ 0.03 \\ 0.03 \end{array}$	$\frac{\gamma_Y}{\min^{-1}}$ 0.05 0.05	$\frac{\kappa_+}{\min^{-1}}$ 0.01 0.01
Fig. 3b 4a E3a	$\frac{\mu_K}{\mathrm{nM}}$ $\frac{\mathrm{nM}}{\mathrm{min}^{-1}}$ $\frac{2}{2^*}$ 2	$\begin{array}{c} \alpha_K \\ \hline \\ 1E-5 \\ 1E-5 \\ 1E-5 \end{array}$	n_K 2.6 2.6 2.6	$ \begin{array}{c} K_K \\ nM \\ 12 \\ 12 \\ 12 \end{array} $	$P \\ nM \\ [0.8,3]^{\dagger} \\^{\dagger} \\^{\dagger}$	$\frac{\gamma_K}{\min^{-1}}$ 0.01 0.01 0.01	$ \frac{\mu_{K*}^{\ddagger}}{\text{nM}} \\ \frac{\text{min}^{-1}}{0.0028} \\ 5\text{E-4} \\ 0.0028 $	$\begin{array}{c} \mu_Y \\ nM \\ min^{-1} \\ 0.75 \\ 0.75 \\ 0.75 \\ 0.75 \end{array}$	α_Y 0.03 0.03 0.03	$\frac{\gamma_Y}{\min^{-1}}$ 0.05 0.05 0.05	$ \frac{\kappa_+}{\min^{-1}} $ 0.01 0.01 0.01
Fig. 3b 4a E3a E3b	$ \frac{\mu_K}{\text{nM}} $ $ \frac{\mu_K}{\text{nin}^{-1}} $ $ 2 $ $ 2^* $ $ 2 $ $ 2 $	α_K 1E-5 1E-5 1E-5 1E-5	n_K 2.6 2.6 2.6 2.6 2.6		$\begin{array}{c} P \\ nM \\ \\ [0.8,3]^{\dagger} \\^{\dagger} \\ 1.57 \end{array}$	$\begin{array}{c} \gamma_K \\ \text{min}^{-1} \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \end{array}$	$\frac{\mu_{K*}^{\ddagger}}{\text{nM}}$ min ⁻¹ 0.0028 5E-4 0.0028 0.28	$\begin{array}{c} \mu_Y \\ nM \\ min^{-1} \\ 0.75 \\ 0.75 \\ 0.75 \\ 0.75 \\ 0.75 \end{array}$	α_Y 0.03 0.03 0.03 0.03	$\frac{\gamma_Y}{\min^{-1}}$ 0.05 0.05 0.05 0.05	$\frac{\kappa_{+}}{0.01}$ 0.01 0.01 0.01 0.01
Fig. 3b 4a E3a E3b E7a,c	$ \frac{\mu_K}{\mathrm{nM}} $ $ \frac{\mu_K}{\mathrm{nm}^{-1}} $ $ \frac{2}{2^*} $ $ 2 $ $ 2 $ $ 2 $	α_K 1E-5 1E-5 1E-5 1E-5 1E-5	n_K 2.6 2.6 2.6 2.6 2.6 2.6 2.6	$ \begin{array}{c} K_K \\ nM \\ 12 $	$\begin{array}{c} P \\ nM \\ [0.8,3]^{\dagger} \\^{\dagger} \\ 1.57 \\^{\dagger} \end{array}$	$\begin{array}{c} \gamma_{K} \\ \text{min}^{-1} \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \end{array}$	$\frac{\mu_{K*}^{\ddagger}}{\text{nM}}$ nM min ⁻¹ 0.0028 5E-4 0.0028 0.28 5E-4	$\begin{array}{c} \mu_Y \\ nM \\ min^{-1} \\ 0.75 \\ 0.75 \\ 0.75 \\ 0.75 \\ 0.75 \\ 0.75 \\ 0.75 \\ \end{array}$	$\begin{array}{c} \alpha_Y \\ \hline \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \end{array}$	$\frac{\gamma_Y}{\min^{-1}} \\ 0.05$	$\frac{\kappa_{+}}{\min^{-1}}$ 0.01 0.01 0.01 0.01 0.01 0.01

[‡] "No feedback" system. [†] Unless directly perturbed. ^{*} When η_+ is "tuned": $\eta_+ = [0.01125, 0.001125] \text{ nM}^{-1} \text{ min}^{-1}$; when μ_K is "tuned": $\mu_K = [0.2, 0.02] \text{ nM} \text{ min}^{-1}$. NOTE: E# refers to Extended Data Figure #.