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Modular and tunable biological feedback control
using a de novo protein switch

SUPPLEMENTARY INFORMATION

1 Model description
We describe below the computational model used to generate all plots in the manuscript.

1.1 Species
• G : degSwitch-transcription factor (e.g. degSwitch-GEM)

• Z : Transcription factor (e.g. ZPM)

• K : Key

• C : Key-degSwitch-transcription factor complex

• Y∗ : "Immature" output (e.g. immature YFP)

• Y : Output (e.g. mature YFP)

Note: For simplicity and readability, in the model analysis and figures we omit the square brackets
when referring to the concentration of these species.

1.2 Parameters
• µG ([nM/min]) : Constitutive synthesis rate of G

• γG ([1/min]) : Degradation/loss rate of free G (i.e. leaky degradation)

• η+ ([1/(nM min)]) : Binding rate of G and K

• η0 ([1/min]) : Unbinding rate of G and K

• η− ([1/min]): Active degradation rate of G in the complex form (i.e. C → K)

• fZ(G+C,E) ([nM/min]) : Synthesis rate of Z regulated by G and E (e.g. µZ · (G+C) ·E)

• E ([nM]) : Co-factor of G to regulate Z synthesis (e.g. oestradiol)

• γZ ([1/min]) : Degradation/loss rate of Z

• fK(X,P ) ([nM/min]) : Synthesis rate of K regulated by Z and P (e.g. µK ·X · P )

• P ([nM]): Co-factor of Z to regulate K synthesis (e.g. progesterone)

• γK ([1/min]) : Degradation/loss rate of K and C

• fY (X,P ) ([nM/min]) : Synthesis rate of Y regulated by Z and P (e.g. µY ·X · P )

• γY ([1/min]) : Degradation/loss rate of Y

• κ+ ([1/min]) : Maturation rate of Y∗
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1.3 ODE system

d

dt
G = µG − γGG− η+GK + η0C (1)

d

dt
Z = fZ(G+ C,E)− γZZ (2)

d

dt
K = fK(Z,P )− γKK − η+GK + (η0 + η−)C (3)

d

dt
C = −γKC + η+GK − (η0 + η−)C (4)

d

dt
Y∗ = fY (Z,P )− γY Y∗ − κ+Y∗ (5)

d

dt
Y = κ+Y∗ − γY Y (6)

2 Qualitative properties
Notice that in this system (Eqs. 1-5), total K concentration (i.e. KT = K+C) and output YT are
given by:

d

dt
KT =

d

dt
(K + C) = fK(Z,P )− γK(K + C) (7)

d

dt
YT =

d

dt
(Y∗ + Y ) = fY (Z,P )− γY (Y∗ + Y ) (8)

assuming fK(Z,P ) and fY (Z,P ) have similar qualitative form (e.g. fK(Z,P ) ∝ fY (Z,P )), then
KT and YT have analogous functional form.

At steady state :

d

dt
G = 0 ⇔ Gss =

µG + η0Css
γG + η+Kss

(9)

d

dt
C = 0 ⇔ Css =

η+GssKss

γK + η0 + η−

⇒ Css =
µGKss

γG(γK+η0+η−
η+

) +Kss(γK + η−)
(10)

Then, when Kss � γG(γC+η0+η−)
η+(γC+η−) , the Css ≈ µG

γK+η−
. This occurs regardless of the specific form

of d
dtK, and in particular the presence or absence of feedback. This is actually an important limit

in the control system, as the feedback action occurs through and only through C formation, and
this is a required step for active degradation –and then the feedback– to occur. For example,
consider that fK(z, P ) is an increasing function of Z and P and consider a positive disturbance
implemented through an increase in P : initially, as P increases, K synthesis increase, potentially
increasing C and then the effective active degradation of G. Once G decreases, the synthesis of Z
will decrease accordingly, decreasing then K synthesis, i.e. “compensating” for the increment on
P . Nevertheless, if C has reached its maximum value (limK→∞C = µG

γK+η−
), increasing K does

not have an effect on G degradation, and the feedback is effectively broken.

2.1 Basal activity & saturation on synthesis functions
We incorporate the complexity of the synthesis process by using a Hill-type function as the synthesis
function for each of the regulated genes:

fZ(G+ C,E) = µZ

(
αZ + (1− αZ)

(E · (G+ C))nZ

(E · (G+ C))nZ +KnZ

Z

)
(11)

fK(Z,P ) = µK

(
αK + (1− αK)

(P · Z)nK

(P · Z)nK +KnK

K

)
(12)

fY (Z,P ) = µY

(
αY + (1− αY )

(P · Z)nK

(P · Z)nK +KnK

K

)
(13)
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where {µZ , µK , µY } represent the maximum synthesis rates, {αZµZ , αKµK , αY µY } the basal syn-
thesis rates, {nZ , nK , nY } the Hill coefficients, and {KZ ,KK ,KY } the activation thresholds relative
to the active regulators (i.e. transcription factor and co-factor complex) for {Z,K, Y } synthesis
rate functions, respectively. We assume that the Hill coefficient and activation threshold are the
same for K and Y synthesis function, as they are both regulated by Z and P ; the maximum and
basal synthesis rate are expected to depend more strongly on the gene sequence, and then we allow
them to differ. When the feedback is removed, fK = µK∗, where µK∗ represents the constitutive
synthesis rate of K.

The Hill function is often used as a phenomenological description of gene regulation. Never-
theless, regardless of the specific form of {fZ , fK , fY } functions, a basal and a maximum synthesis
rate are expected for every gene. The functions in Eqs. 11-13 allow us to explore the effect of these
limits.

Extended Data Figure 3a shows an example of the steady state results for different values of
P using this model (Eqs. 11-13). As expected, the feedback is active only when C is neither too
small nor too high. We define the feedback as “active” whenever the relative change in total G
(GT = G+C) over the relative change of the P -disturbance is higher than an arbitrary threshold
(e.g. ε = 0.15):

(∆GT )/GT
(∆P )/P

≥ ε (14)

Feedback directly changes the amount of GT , thus this metric is useful because the amount of
feedback is correlated to the sensitivity of GT to the P -disturbance. The value of ∆GT as well as
the metric in Eq. 14 are equal to zero in an system without feedback.

Similar to perturbing the system by increasing the concentration of P , it is possible to test
the feedback action by perturbing the degradation rate of Z (see Figure 3b in the main text).
Extended Data Figure 3b shows that this “negative” perturbation has a similar response compared
to the previous “positive” perturbation (Extended Data Figure 3a), just changing the direction
of the effect of the perturbation (i.e. Z increases as γZ increases, to “compensate” for the faster
degradation of X). Once again, the feedback control is active (substituting ∆(P )/P by ∆(γZ)/γZ
in Eq. 14) when C has not reach saturation and its concentration is high enough to contribute
significantly to the degradation of GT .

2.2 Tuning the feedback efficiency
Extended Data Figure 7 shows a few examples of how steady state solution and feedback “activity”
regime varies as either η+ or µK change. In both cases, decreasing the parameter value initially
shifts the feedback “activity” regime towards higher P -disturbance values (Extended Data Figure
7c-d), and eventually breaks the feedback reducing both the range and magnitude of the feedback
activity (as defined by Eq. 14). Nevertheless, for high values of η+, the sensitivity of GT increases
dramatically, compared to high values of µK , where the feedback actually saturates and eventually
breaks. Therefore, systems with higher η+ can potentially result in a stronger and more efficient
feedback. Nevertheless, Extended Data Figure 7a shows an example where the feedback activity
occurs where the output Y expression is very close to its basal value, making the benefit of this
increment of η+ almost imperceptible (compare black and purple continuous lines in Extended
Data Figure 7a). In this case, decreasing the basal expression of Y would be enough to reveal the
feedback action on this system. This example highlights the advantage of defining this model to
do a full tuning of the experimental system.
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Table : Simulation parameter values in Figures & Extended Data Figures
µG γG η+ η0 η− µZ αZ nZ KZ E γZ

Fig. nM min−1 nM−1 min−1 min−1 nM nM nM min−1

min−1 min−1 min−1

3b 0.006 0.02 0.0375 1E-4 0.05 11 1E-6 2.2 36 7.5 0.01
4a 0.006 0.02 0.0375∗ 1E-4 0.05 11 1E-6 2.2 36 7.5 0.01
E3a 0.006 0.02 0.0375 1E-4 0.05 11 1E-6 2.2 36 7.5 0.01
E3b 0.006 0.02 0.0375 1E-4 0.05 11 1E-6 2.2 36 30 0.01
E7a,c 0.006 0.02 0.0375† 1E-4 0.05 11 1E-6 2.2 36 7.5 0.01
E7b,d 0.006 0.02 0.0375 1E-4 0.05 11 1E-6 2.2 36 7.5 0.01

µK αK nK KK P γK µK∗
‡ µY αY γY κ+

Fig. nM nM nM min−1 nM nM min−1 min−1

min−1 min−1 min−1

3b 2 1E-5 2.6 12 [0.8, 3]† 0.01 0.0028 0.75 0.03 0.05 0.01
4a 2∗ 1E-5 2.6 12 ...† 0.01 5E-4 0.75 0.03 0.05 0.01
E3a 2 1E-5 2.6 12 ...† 0.01 0.0028 0.75 0.03 0.05 0.01
E3b 2 1E-5 2.6 12 1.57 0.01 0.28 0.75 0.03 0.05 0.01
E7a,c 2 1E-5 2.6 12 ...† 0.01 5E-4 0.75 0.03 0.05 0.01
E7b,d 2† 1E-5 2.6 12 ...† 0.01 5E-4 0.75 0.03 0.05 0.01

‡ “No feedback” system.
† Unless directly perturbed.
∗ When η+ is “tuned”: η+ = [0.01125, 0.001125] nM−1 min−1;
when µK is “tuned”: µK = [0.2, 0.02] nM min−1.
NOTE: E# refers to Extended Data Figure #.
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