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Evolutionary dynamics of an epigenetic switch in a fluctuating environment
S1 Appendix. Supplementary Table: Previous Work

Authors Year Phenotypes Environment Fitness Selection Explicit cost Generations Comments

1995 Both 2-discrete Symmetric

1996 Analytical 2-discrete Symmetric None

2004 Analytical 2-discrete Symmetric None

2005 Analytical

2005 Both 2-discrete Asymmetric None

2005 Both Asymmetric None

Ribeiro 2008 Invasion Simulations Symmetric None

2009 Invasion Simulations Asymmetric None

2010 Analytical 2-discrete Asymmetric None

Evolutionary 
strategies

Comparison 
method

Analytical/ 
Numerical

Population 
size

Jablonka et al.
Inducible 
switching; 
stochastic 
switching

Average 
growth rate

Periodic & 
random; 

asymmetric
(2 states)

Differential 
growth rate

Induction 
delay

Growing 
(discrete)

Non-
overlapping

They compared three different strategies: non-inducible (with 
a small stochastic transition rate), completely inducible, or an 
intermediate response (memory), considering some induction 
delay and the phenotypic memory as a tunable property. They 

observed that the intermediate response is advantageous 
under random environmental fluctuations; if the environment 

is strictly periodic, the inducible system is favored unless 
fluctuations occur faster than the induction delay.

Lachmann & 
Jablonka

Inducible 
switching; 
stochastic 
switching

Average 
growth rate

Periodic
(2 states)

Differential 
growth rate

Growing 
(discrete)

Non-
overlapping

They explored the optimal values for the transition rates 
under fluctuating environments; they concluded that for non-
inducible systems, the optimal rate for random transitions is 

around the frequency of the environmental fluctuations.

Thattai & van 
Oudenaarden

Inducible 
switching; 
stochastic 
switching

Average 
growth rate

Periodic & random
(2 states)

Differential 
growth rate

Growing 
(continuous)

Continuous 
time (ODEs)

They considered that the transitions between phenotypic 
states depend on the environment and explored under which 
circumstances a transition rate to the “unfit” state different to 
zero will be selected; they concluded that if the transition to 

the “fit” state is fast enough –short induction delay–, an 
homogeneous population will be always favored.

Kussell & 
Leibler

Inducible 
switching; 
stochastic 
switching

Average 
growth rate n-discrete Random

(n states)
No explicit 
assumption

Differential 
growth rate

Sensing, 
diversity & 
induction 

delay costs

Growing 
(continuous)

Continuous 
time (ODEs)

They compared inducible to stochastic transitions but taking 
in account the cost of sensing, the induction delay and the 

diversity cost imposed by the stochastic switching. They 
concluded that a sensor is only worth if the environment is 

highly uncertain, and the stochastic switching will be favored 
when the environment changes infrequently.

Kussell et al. Stochastic 
switching

Average 
growth rate

Periodic; 
asymmetric

(2 states)
Differential 
growth rate

Growing 
(continuous)

Continuous 
time (ODEs)

They considered only stochastic transitions, and they 
observed that the type of environmental changes determines 

the strategy to be used.

Wolf et al.
Fixed; inducible 

switching; 
stochastic 
switching

Average 
growth rate

n-discrete 
(focus on n=2)

Random; 
asymmetric

(n states)
Differential 
growth rate

Growing 
(discrete)

Non-
overlapping

They considered more flexible adaptation strategies, going 
from ignoring the environment, a deterministic inducible 

response, stochastic inducible response, to pure stochastic 
switching. If no sensor exists, stochastic switching is always 
selected under the time-varying environmental conditions 

selected here, as well as if the detection of the sensor is bad 
or long induction delays exist.

Inducible; 
stochastic 
switching 
(bistable 

genetic circuit)

Continuous 
(mechanistic)

Random
(2 states)

Truncation 
selection

Fixed (discrete; 
1000 

individuals)
Non-

overlapping

He modeled individual cells as toggle switches and explored 
the population behavior under a fluctuating environment, 

considering both inducible systems and pure stochastic 
switching. He concluded that the optimal noise level depends 
on the environmental fluctuations, and as noise increases, the 

fitness increases too in fast fluctuating environments.

Salathé et al.
Fixed; 

stochastic 
switching

2-discrete
(x 2-modifier 

states)
Periodic & random

(2 states)
Proportional 

selection 
scheme

Infinite (sub-
population 

frequencies)
Non-

overlapping

Assuming an infinite population and following subpopulation 
frequencies through generations, they explored the impact of 
asymmetric fitness landscapes. They concluded that with the 

fitness asymmetry over a certain threshold, unless the 
selection pressure is very strong in both environments, 

ignoring the environment becomes optimal over stochastic 
switching (with an optimal rate approximately equal to the 

environmental fluctuation frequency).

Gaál et al.
Fixed; 

stochastic 
switching

Average 
growth rate

Periodic; 
asymmetric

(2 states)
Differential 
growth rate

Infinite (sub-
population 

frequencies)
Continuous 
time (ODEs)

They observed that as the asymmetry in the environments 
increases, the selected strategy goes from the optimal 

stochastic switching population (where the transition rate is 
assumed equal in both directions) to an equally optimal non-
switching and switching populations, to finally being optimal 

to ignore the environment, even if a local maximum still exists 
for a switching rate distinct to zero.



2010 Analytical 2-discrete Asymmetric None

2011 Both Symmetric None

Libby & Rainey 2011 Both 4-discrete Symmetric

2012 Simulations Symmetric None

2012 Simulations None

2013 Invasion Both None

2014 Invasion Simulations Asymmetric

2014 Invasion Both Symmetric None

2014 Invasion Both Asymmetric None

Visco et al.
Fixed; 

stochastic 
switching

Average 
growth rate

Responsive (i.e. 
catastrophe rate 
depends on the 

population); 
random (one 

normal state & 
instantaneous 
catastrophe)

Differential 
growth rate

Growing 
(continuous)

Continuous 
time (ODEs)

They explored the selection of stochastic switching under a 
single environment with occasional and instantaneous 

catastrophic events whose rate depends on the population 
structure. They observed that stochastic switching strategy is 
favored by strong catastrophes, while non-switching by weak 

catastrophes.

Liberman et al. Stochastic 
switching

Average 
growth rate 
& invasion

2-discrete
(x 2-modifier 
states with 
recombina-

tion)

Periodic
(2 states)

Differential 
growth rate

Infinite (sub-
population 

frequencies)
Non-

overlapping

They took Salathé et al. (2009) and Gaál et al. (2010) one step 
forward including recombination in the model; they observed 
that, under their model, recombination makes unlikely that a 

stable non-zero transition rate exists.

Fixed; 
stochastic 
switching

Average 
probability of 

being 
selected

Periodic (one 
normal state & 
instantaneous 
catastrophe)

Strong 
frequency 
dependent 
selection: 

exclusion rule + 
bottleneck

Switching 
cost

Growing 
(continuous)

Continuous 
time (ODEs)

They considered a strong frequency-dependent selection, 
with an exclusion rule for the most fitted subpopulation and 
bottleneck when the environment changes. Even considering 

a switching cost –reducing the growth rate on switching 
genotypes–, exclusion rules are observed to favor switching 
phenotypes; on the other hand, larger (weaker) bottlenecks 

permit faster-growing, non-switching types to pass through to 
the next “round” outgrowing the switching type.

Carja & 
Feldman

Stochastic 
switching

Probability of 
survival n-discrete Periodic

(2 states)
Proportional 

selection 
scheme

Fixed (discrete; 
10000 

individuals)
Non-

overlapping
They found that phenotypic variability increases in 

populations under fast fluctuating environments, but this 
effect disappears as the fluctuations become less frequent.

Kuwahara & 
Soyer

Genetic 
adaptation; 
stochastic  
switching 
(bistable 

genetic circuit)

Natural 
selection

Continuous 
(mechanistic)

Periodic & random
(2 states)

Symmetric 
(binary  

function)

Proportional 
selection 
scheme

Fixed (discrete; 
1000 

individuals)
Non-

overlapping

They not only included a mechanistic model, but considered 
the genetic adaptation to explore the adaptive origin of 

stochastic epigenetic switches under fluctuating 
environments. They observed that bistability emerges and is 

maintained only in a limited range of evolutionary conditions, 
and suggested that its selection occurs only as a byproduct of 

the selection for evolvability. Noteworthy, they assumed a 
“binary” fitness function which would not favor the underlying 

bimodal distribution in a bistable system.

Carja et al. Stochastic 
switching

4-discrete
(x 2-modifier 
states with 
recombina-

tion)

Periodic & random
(n states)

No explicit 
assumption

Differential 
growth rate

Infinite (sub-
population 

frequencies)
Non-

overlapping
An extension of Liberman et al. (2011) model; they reached 

similar conclusions.

Furrow & 
Feldman

Inducible 
switching; 
stochastic 
switching

2-discrete
(x 2-modifier 
states with 2 

epigenetic 
states)

Periodic & random
(2 states)

Differential 
growth rate

Epigenetic 
regulation

Infinite (sub-
population 

frequencies)
Non-

overlapping

They expanded the classical modifier model (e.g. Salathé et 
al., 2009) to consider inducible switching and the associated 

cost. They observed that the environmental fluctuation 
frequency influences the conditions for evolution of 

epigenetic regulation (either induced or stochastic switching).  

Carja et al. 
(Genetics)

Stochastic 
switching

2-discrete
(x 2-modifier 
states with 
recombina-

tion)

Periodic
(2 states)

Differential 
growth rate

Infinite (sub-
population 

frequencies)
Non-

overlapping

They took Salathé et al. (2009) one step forward including 
migration in the model, and study the evolution of switching 

rates in the presence of both spatial and temporal 
heterogeneity in selection pressures. They observed that the 
evolutionary dynamics of the system are mainly governed by 

the environmental fluctuation rate.

Carja et al. 
(PNAS)

Stochastic 
switching

4-discrete 
(x 2-modifier 
states with 
recombina-

tion)

Periodic & random
(2 states)

Differential 
growth rate

Infinite (sub-
population 

frequencies)
Non-

overlapping

They took Salathé et al. (2009) and Liberman et al. (2011) one 
step forward including migration in the model, and compare it 

to the effect of mutation and recombination as sources of 
phenotypic variation; they observed that, under their model, 
these three essentially different evolutionary forces respond 

very similar to fluctuating selection.



2015 Simulations Continuous Symmetric

2015 Frequency Simulations 2-discrete Symmetric None

Belete & Balázsi 2015 Both 2-discrete Asymmetric None

- Simulations None -

Botero et al.
Inducible 
switching; 

genetic 
adaptation

Natural 
selection

Periodic 
(continuous)

Proportional 
selection 
scheme

Phenotypic 
plasticity

Fixed (discrete; 
5000 

individuals)
Non-

overlapping

They used an abstract model which, while simple, can still 
display plasticity, bet-hedging, and genetic adaptation. Testing 
multiple environmental variation patterns, they observed that 

different adaptive responses consistently evolve under 
different timescales and predictabilities of the environmental 

variation.

Lin et al.
Fixed; 

stochastic 
switching

Periodic
(2 states) + 
bottlenecks

Differential 
growth rate

Growing 
(discrete)

Continuous 
time

They explored the origin of the stochastic transitions in 
fluctuating environments distinguishing between standing 

variation and de novo mutations using both an experimental 
and a mathematical model. They concluded that the 

contribution of each of these mechanisms on the adaptation 
process depends on the fluctuation timescales.

Stochastic 
switching

Average 
growth rate

Periodic; 
asymmetric

(2 states)
Differential 
growth rate

Fixed (discrete; 
10000 

individuals)
Non-

overlapping

They explored the stochastic switching rate dependency to 
the environmental fluctuation frequency in asymmetric 
environments and fitness as the environmental duration 
shorten. In this limit, they observed that the previously 

described optimal switching rate matching environmental 
fluctuation frequency does not always hold.

Gómez-
Schiavon & 

Buchler

Genetic 
adaptation; 
stochastic  
switching 
(bistable 

genetic circuit)

Natural 
selection

Continuous 
(mechanistic)

Periodic & random
(2 states)

Symmetric 
(Lorentzian 
function)

Tournament 
selection 
scheme

Fixed (discrete; 
10000 

individuals)
Non-

overlapping
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S2 APPENDIX. ALTERNATIVE ASSUMPTIONS DETAILS.

We tested the robustness of our results to alternative choices and assumptions in the

presented model by: changing the used evolutionary model (Section A), allowing the en-

vironment to fluctuate randomly between the two possible states with mean frequency ν

(Section B), using the average protein number or the distribution of protein numbers over

the individual life span as phenotype (Section C), changing the fitness function to a Gaus-

sian or a step-like function with similar span around the optimal phenotypes (Section D),

implementing different selection schemes (Section E), as well as different mutation schemes

(Section F). Additionally, more quantitative aspects of the model were perturbed by ex-

ploring other optimal phenotypes for the environments (Section G), basal activity α values

(Section H), and different degradation rate γ values (Section I). In addition, we allowed

the basal activity α parameter to evolve simultaneously with {k, nH , KD} (see S10 Fig).

A. Moran model

Wright-Fisher and Moran models are the most common options to simulate evolution.

In our main simulations, we implemented a version of the Wright-Fisher model with non-

overlapping generations. Alternatively, we tested a Moran model, where the reproduction

and death events are treated as stochastic events allowing overlapping generations. At each

time step, an individual is chosen for reproduction using the defined tournament selection

scheme, and an individual is randomly chosen from the population for death to keep the

population size N fixed. N time steps occur in the previously defined lifespan time, such

that the reproduction rate (and then mutation) is equivalent to the original model.

B. Environmental random fluctuations

The environmental fluctuations in our main simulations were regular and periodic with

frequency ν. We tested whether stochastic fluctuations with frequency ν produced different

results; even though previous work demonstrated little difference between the two types of

fluctuations [1–4]. In these alternative simulations, the environment fluctuates randomly

between the two possible states with mean frequency ν.
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C. Phenotype definition

Our simulations evaluated the protein number (phenotype) at the end of Gillespie simula-

tion (individual life span) to calculate a fitness score given by a Lorentzian function centered

the optimal phenotype. We also tested alternative phenotype definitions: (1) the life-time

average protein number to assign its fitness score to each individual in the population, or

(2) the life-time protein number distribution to calculate the average fitness score for each

individual in the population.

D. Fitness functions

We also changed the shape of the fitness function from a Lorentzian to a Gaussian fitness

function:

ω(E)
g (A) = e

− (A−A(E))2

2σ2
(E) (S1)

where σ2
(E) is equal to the width in the Lorentzian fitness function (v2); or a step-like function:

ω(E)
s (A) =

1 if (A− A(E))2 ≤ 2σ2
(E)

0, otherwise
(S2)

where σ2
(E) is equal to the width in the Lorentzian fitness function (v2).

E. Selection schemes

We used Tournament selection to select the next generation of cells based on the fitness of

the individuals in the current generation. Other common selection schemes are Truncation,

Proportional, and Weighted selection [5].

In the truncation selection scheme, only a certain fraction of the best individuals can be

selected, each with the same probability. Blickle & Thiele (1995) calculated the truncation

fraction that resulted in the same selection strength as a given tournament size (Table I).

They estimated that st = 40 corresponds to a 0.04 truncation fraction. We used this fraction

in our Truncation selection simulation.

Using the proportional selection scheme, the probability of an individual to be selected

is proportional to its fitness value. Similarly, in the weighted selection scheme, a random

3



TABLE I. Evolutionary parameters

Parameter Range Units

N Population size {100, 250, 630, 1600, 4000, 10000} individuals

ν Environmental fluctua-

tion frequency

{0.01, 0.02, 0.04, 0.0625, 0.10} 1/generation

st Selection pressure (i.e.

tournament size)

{3 (47%), 6 (24%), 15 (10%),

40 (4%), 100 (1.7%), 250 (0.7%)}a
individuals

u Mutation rate {0.01, 0.03, 0.10} (1/individual)

(1/generation)

M Mutation step-size (i.e.

maximum fold change)

{1.1, 1.4, 1.7, 2.1, 2.6, 3.2, 4.0, 5.0}

a The equivalence between tournament size and truncation selection is shown in parenthesis.

The numbers in italics were inter- and extrapolated from the values presented in [5].

individual is picked from the population and is cloned into the new population if a uniformly

distributed random number (from the interval [0,1]) is below its fitness. Importantly, the

selection strength cannot be directly tuned in either of these two schemes.

F. Mutation scheme

Our simulations used a spherically symmetric 3D mutation scheme to permit co-variation

in biophysical parameters in a single mutational step. Co-variation is expected in a natural

system as a single mutation can simultaneously affect multiple biophysical parameters; and

the spherical space is a natural interpretation of M as the maximum mutation step-size,

making it the maximum fold-change “distance” from the parental genotype. The actual

mutation step size was determined by the radius of the spherical mutation, which was a

uniformly distributed random value between 0 and 1 (r ∼ U(0, 1)). Such a radial density

produces a non-uniform density of mutations with highest densities close to the parental

phenotype because volume scales as r3. We tested homogeneous spherical mutation by sub-

stituting r in Eqs. (5-7) with 3
√
r and a homogeneous cubic mutation where three uniformly

distributed random value between -1 and 1 (ri ∼ U(−1, 1)) for each biophysical parameter.

We also verified that mutating only one parameter at a time (1D mutation) and increasing
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the range of biophysical parameters to allow higher nonlinearity (10−2 ≤ nH ≤ 24) and

weaker DNA dissociation constants (10−2 ≤ KD ≤ 103) did not fundamentally change our

results.

G. Optimal phenotypes

The main simulations were performed with the LOW environment selecting for an optimal

phenotype A(L) = 20 proteins and HIGH environment for an optimal phenotype A(H) = 80

proteins. The effects of doubling (A(L) = 40 proteins, A(H) = 160 proteins) and dividing by

two (A(L) = 10 proteins, A(H) = 40 proteins) these values were explored.

H. Basal activity

At high levels of nonlinearity, the lowest protein level is k · α and the highest protein

level is k. A bistable, epigenetic switch has two solutions, each well-adapted to one of the

environments only when the ratio R = A
(L)
opt/A

(H)
opt = α (S1 Fig). Any mismatch between α

and R will disfavor epigenetic switching because an epimutation from an adapted mode will

jump to a maladapted mode, after which the descendants must accumulate genetic mutations

to further adapt. We explored the effect of other values of basal activity parameter (α = 0.2,

and α = 0.3), but adjusting the LOW optimal phenotype accordingly (A(L) = 16 proteins,

and A(L) = 24 proteins, respectively).

The rate of epimutation is sensitive to the frequency and magnitude of stochastic events.

The magnitude of stochastic events is inversely proportional to the total number of molecules.

A higher rate of epimutation for smaller numbers of molecules is expected. The rate of

epimutation should also increase as the two modes become closer. Thus, we expect a higher

rate of epimutation for larger α.

I. Degradation rate

The protein degradation rate (γ) sets the timescale between stochastic events (i.e. faster

protein degradation leads to more stochastic events per unit time during a Gillespie simula-
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tion). Thus, we expect a higher rate of epimutation for larger γ.
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