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Abstract

Epigenetic switches are bistable, molecular systems built from self-reinforcing feedback

loops that can spontaneously switch between heritable phenotypes in the absence of DNA

mutation. It has been hypothesized that epigenetic switches first evolved as a mechanism of

bet-hedging and adaptation, but the evolutionary trajectories and conditions by which an epi-

genetic switch can outcompete adaptation through genetic mutation remain unknown. Here,

we used computer simulations to evolve a mechanistic, biophysical model of a self-activat-

ing genetic circuit, which can both adapt genetically through mutation and exhibit epigenetic

switching. We evolved these genetic circuits under a fluctuating environment that alterna-

tively selected for low and high protein expression levels. In all tested conditions, the

population first evolved by genetic mutation towards a region of genotypes where genetic

adaptation can occur faster after each environmental transition. Once in this region, the self-

activating genetic circuit can exhibit epigenetic switching, which starts competing with

genetic adaptation. We show a trade-off between either minimizing the adaptation time or

increasing the robustness of the phenotype to biochemical noise. Epigenetic switching was

superior in a fast fluctuating environment because it adapted faster than genetic mutation

after an environmental transition, while still attenuating the effect of biochemical noise on

the phenotype. Conversely, genetic adaptation was favored in a slowly fluctuating environ-

ment because it maximized the phenotypic robustness to biochemical noise during the con-

stant environment between transitions, even if this resulted in slower adaptation. This

simple trade-off predicts the conditions and trajectories under which an epigenetic switch

evolved to outcompete genetic adaptation, shedding light on possible mechanisms by which

bet-hedging strategies might emerge and persist in natural populations.
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Author summary

Epigenetic switches regulate cell fate decisions during development in multicellular organ-

isms, but their origin predates multicellularity because they are found in viruses, bacteria,

and unicellular eukaryotes. It has been suggested that epigenetic switches first evolved as a

mechanism of bet-hedging and adaptation to fluctuating environments. To discern the

evolutionary pressures that select for epigenetic switches, we used computer simulations

to evolve a mechanistic, biophysical model of a self-activating genetic circuit, which can

both adapt genetically and exhibit epigenetic switching. Unlike laboratory evolution

experiments, this in silico experiment was run many times over a range of evolutionary

parameters (population size, selection pressure, mutation step-size, fluctuation frequency)

and different model assumptions to uncover statistical regularities in the evolutionary tra-

jectories. Using this computational approach, we could elucidate simple principles that

predict the conditions that favor adaptation by epigenetic switching over genetic mutation

in a fluctuating environment.

Introduction

Populations often need to adapt to environmental changes in order to survive. Classic models

of genetic adaptation presume that random genetic mutations generate novel phenotypes that

can be selected by the environment [1]. Under some circumstances, e.g. small populations or

fast fluctuating environments, the spontaneous appearance of a beneficial mutation might be

too infrequent and, thus, some organisms may induce genetic variation to accelerate adapta-

tion to a new environment. Examples include adaptive mutation, where genetic variation

occurs in response to the environment [2], directed mutation, where non-random and useful

mutations are induced [3], and cryptic variation, where non-neutral mutations accumulate

and are buffered without phenotypic consequences until the environment changes [4].

Alternatively, many organisms have evolved biochemical networks that directly sense envi-

ronmental cues and induce phenotypic responses to the new environment (known as “pheno-

typic plasticity”). The frequency of environmental change, the accuracy of cues, the penalty of

non-adaptation, as well as the cost of producing the sensing machinery will determine the

advantage of phenotypic plasticity [5, 6].

A third option is to generate spontaneous phenotypic variation (i.e. not in response to the

environment) but restrict this variation to specific phenotypic states. This is possible through

the evolution of epigenetic switches, where multiple stable phenotypic states (e.g. level of gene

expression) are possible in a genetically identical population and stochastic transitions between

these states occur without genetic mutations [7]. This corresponds to the original definition of

“epigenetics” by Waddington [8], and epigenetic switches have been proposed as one mecha-

nism of bet-hedging to deal with fluctuating environments [9]. Epigenetic switches can emerge

through self-reinforcing feedback loops in biochemical or genetic networks, and the epigenetic

phenotypes are heritable from mother to daughter cells [10]. Examples of epigenetic switches

include heritable gene regulation by self-reinforcing transcription factor activity, DNA methyl-

ation, chromatin modification, non-coding RNAs, and prions [11]. Spontaneous transitions

between epigenetic states (an “epimutation”) can occur due to biochemical fluctuations and

noisy gene expression, where the epimutation rate is usually much faster than genetic mutation

[12]. Epimutation generates phenotypic diversity and quick adaptation when one of the new

states is favored in the changed environment; on the other hand, these frequent epimutations

impose a cost in the population when the environment remains unchanged. As such,
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epigenetic switches represent a bet-hedging strategy, and an alternative to slower genetic adap-

tation and costly phenotypic plasticity. Epigenetic switches have been shown to occur in natu-

ral populations [13], and to evolve as an adaptation to fluctuating selection during laboratory

evolution of microbes [14, 15]. Nevertheless, the specific evolutionary conditions that lead to

the emergence and selection of epigenetic switches remain to be elucidated.

The advantage of phenotypic plasticity over epigenetic switches in fluctuating environ-

ments has been extensively studied using mathematical models and simulations [5, 16–36].

Phenotypic plasticity was almost always advantageous when the associated cost was low (i.e.

small induction delays, environmental cues reliably switch cells to optimal adapted pheno-

types, small metabolic burden of biochemical network). In conditions where phenotypic plas-

ticity was disfavored or not available, the authors showed that an epigenetic switch conferred

an advantage when the spontaneous epimutation rates matched the environmental fluctuation

rate and when selection pressures on fit/unfit phenotypes were symmetric between the two dif-

ferent environments (see S1 Appendix for details).

Many of the models used in these studies did not include genetic adaptation through muta-

tion, a competing process that occurs in all organisms. Genetic mutations can modify biophys-

ical parameters of protein-DNA and protein-protein interactions, and thus affect the levels

and dynamics of gene expression. To better understand the evolutionary dynamics of an epige-

netic switch in a fluctuating environment, we used computer simulation to evolve a self-acti-

vating gene in a fluctuating environment where genetic mutations changed biophysical

parameters and, thus, modified gene expression (i.e. phenotype). A self-activating gene is the

simplest mechanistic model of a genetic network that can simultaneously adapt genetically

and exhibit epigenetic switching. In a specific region of the biophysical parameter space, the

expression of a self-activating gene can be bistable (e.g. two stable states) and biochemical

noise could spontaneously induce a transition between these two stable states (e.g.

epimutation).

We evaluated the evolutionary dynamics of this simple circuit over a broad range of evolu-

tionary parameters (population size, selection pressure, mutation step-size, environmental

fluctuation frequency) and tested different model assumptions. In all tested conditions, popu-

lations initially evolved by genetic mutation to genotypes (parameter space) with high nonline-

arity, even in the absence of biochemical noise, in agreement with previous work [28, 37]. We

developed a simple predictive model to show that the circuit’s genetic potential under fluctuat-

ing selection increases in this region of parameter space. Briefly, an adapted genotype has a

large genetic potential if a short mutational path exists to another genotype that is well-adapted

to the alternative environment, thus facilitating the genetic adaptation after an environmental

transition [38]. Once in the high-nonlinearity regime, we show that a trade-off exists where

the adaptation time after each environmental transition –adaptation potential– and the cost

imposed by the biochemical noise –noise load– cannot be simultaneously optimized. More-

over, the balance of this trade-off depends on the specific nonlinearity value (as measured by

the Hill coefficient nH). By tracking genotypes and individual lineages that persisted –with or

without mutations– across generations, we show that epigenetic switching was in fact selected

in fast fluctuating environments, where the benefit of the adaptation potential is maximized.

As the environmental fluctuation frequency decreases, genetic adaptation was favored and

selected even higher nonlinearity values optimizing the noise load. Also, lineage tracking

allowed us to identify a hybrid strategy where a bistable population would adapt genetically,

which can optimally balance the described trade-off when the mutation step-size (M) was

small in slowly fluctuating environments. Finally, by estimating the expected noise load, and

the associated epimutation probability, for each genotype, we show that the evolutionary
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advantage of epigenetic switching is that it allows for quick adaptation while still attenuating

the biochemical noise level.

Results

A self-activating gene can display a unimodal distribution (monostable) or a bimodal distribu-

tion of protein number (bistable), depending on the underlying biophysical parameters (Fig 1

and S1 Fig). The spontaneous transitions (i.e. epimutation) between bistable phenotypes are

driven by stochastic gene expression. Genetic mutations change the biophysical parameters

Fig 1. Genetic adaptation and epigenetic switching of a self-activating gene. (A) Diagram of a self-activating gene that considers

two biochemical events: protein synthesis with a rate that increases with number of proteins A (i.e. positive feedback loop) and

protein degradation. On the right, a cartoon of the biophysical parameter space or genotypes (θ) of this gene circuit with two

characteristic regions: monostable (white) and bistable (pink) phenotypes. In the monostable region, a genotype (θL or θH) might be

optimal in either one environment (e.g. LOW protein numbers) or the other (e.g. HIGH protein numbers). Genetic mutations are

required to change from one solution the other (blue arrow). In the bistable region, a single genotype (θB) can display two different

phenotypes with each phenotype potentially optimal in both environments. (B) Cartoon of the protein number (A) dynamics in an

individual cell with each of the genotypes described in (A). Monostable genotypes (θL and θH) exhibit a unimodal distribution of

protein expression (ρ(A)), whereas a bistable genotype (θB) exhibits a bimodal distribution having spontaneous transitions between

phenotypic states over time (i.e. epimutations) triggered by stochastic gene expression. Cartoon of the population dynamics using

(C) genetic adaptation or (D) epigenetic switching to adapt after an environmental change. The fitness score function (ω; orange

dashed line) and the phenotype distribution of the population (P(A); blue line) are shown for each generation (g), and the fraction of

the population expected to be selected in the next generation (i.e. individuals with higher fitness scores) are highlighted (blue area).

The environment changes from selecting HIGH protein numbers (light green) to select LOW protein numbers (dark green).

https://doi.org/10.1371/journal.pcbi.1007364.g001
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(i.e. genotype) and will modify both the distribution of protein number (i.e. phenotype, ρ(A))

and the stochastic transition rate between bistable phenotypes. Two qualitatively different

strategies of evolutionary adaptation could emerge from a self-activating gene. The population

could evolve from one monostable distribution to another by mutating its biophysical parame-

ters after each environmental change (i.e. genetic adaptation). Alternatively, the population

could reside at a bistable solution where each bimodal state is optimal in one of the environ-

ments and epimutations from one bistable state to another occur over time without an under-

lying genetic mutation (i.e. epigenetic switching). In both cases, the phenotypic distribution of

the population P(A) expands each generation due to gene expression noise and mutations, but

natural selection keeps it centered on the optimal protein number as determined by the fitness

function of the current environment. After an environmental change, the fitness function

changes and the tail of the phenotypic distribution with higher fitness will be selected every

generation. In the case of genetic adaptation, this selection will gradually shift the population

towards the new optimal phenotype through the accumulation of new mutations until the

population is well-adapted again. The speed of genetic adaptation depends on the rate of

arrival of fitter mutations, as well as the selection pressure. When the population applies epige-

netic switching, the phenotypic noise also includes epimutations, which increase the mal-

adapted fraction in the population (epimutational load). However, after the environment and

the fitness function change, the “epimutated” individuals rapidly overtake the population,

quickly shifting the distribution to the new optimal value. Thus, genetic adaptation and epige-

netic switching can directly compete as two strategies of adaptation to a fluctuating

environment.

Stochastic dynamics of a self-activating gene

For simplicity, we considered two biochemical events (protein synthesis or degradation) that

either increase or decrease the number of proteins A by one molecule:

Protein synthesis : A � !
f ðAÞ

Aþ 1 ð1Þ

Protein degradation : A � !
g�A

A � 1 ð2Þ

The synthesis rate f(A), which describes the probability per unit time that protein synthesis

occurs and that A is increased by one, is a nonlinear function of activator A:

f ðAÞ ¼ k � aþ ð1 � aÞ
AnH

AnH þ KnH
D

� �

ð3Þ

where k (number of proteins/unit time) represent the maximum synthesis rate, α is the basal

synthesis rate relative to k, KD (number of proteins) is related to the protein-DNA dissociation

constant, and nH is the degree of molecular cooperativity (i.e. Hill coefficient). The degradation

rate γ � A, which describes the probability per unit time that protein degradation occurs and

that A is decreased by one, is a linear function of activator A where γ (1/unit time) is the

protein degradation rate constant. With no loss of generality, we defined the unit of time as

τ = t � γ, which allows us to substitute time t with a time-dimensionless variable (see Methods).

We used the Gillespie algorithm, a kinetic Monte Carlo method that explicitly simulates the

probabilistic dynamics of a defined set of biochemical events [39], to simulate the stochastic

dynamics of our gene circuit (see Methods).
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Evolutionary model

For simplicity, we evolved a haploid, asexual population with non-overlapping generations in

a fluctuating environment (Fig 2). The underlying biophysical parameters depend on protein

stability, protein-protein, protein-RNA, and protein-DNA interactions, which can change

through genetic mutations. For simplicity, we allowed mutations on the maximum synthesis

rate (k), Hill coefficient (nH) and DNA dissociation constant (KD) during our evolutionary

simulations, while keeping basal activity (α = 0.25) and degradation rate (rescaled, γ = 1) fixed.

The set of variable parameters {k, nH, KD} are the genotype (θ). The environment fluctuated

periodically with frequency ν between LOW (selects for optimal phenotype A(L) = 20 proteins)

and HIGH (selects for optimal phenotype A(H) = 80 proteins). The number of generations

Fig 2. Evolutionary model. The environment fluctuates periodically with frequency ν. The total number of generations spent in a constant

environment (epoch) has the same length (1/ν) and each environment (HIGH or LOW) selects for a different distribution of protein levels

(phenotypes). Each generation, we simulated the stochastic protein dynamics of a self-activating gene in each cell across a population of size N. At the

end of each simulation, the population phenotypes varied because gene expression is stochastic and because cells can have different underlying

biochemical parameters (genotypes). The current environment in each generation assigned a fitness (ωi) to each cell (i) based on its final protein level.

We used tournament selection (where st determines the strength of selection) to determine the next generation of cells according to their fitness. Each

cell in the next generation was mutated with probability u, where the current set of biophysical parameters were multiplied or divided up to a maximum

step-size of M.

https://doi.org/10.1371/journal.pcbi.1007364.g002
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spent in a constant environment (“epoch”) was equal to 1/ν generations. The selective environ-

ment switched to the alternative state at the end of an epoch. Starting from an isogenic popula-

tion, we ran each evolutionary simulation for 10,000 generations. We implemented the

following algorithm each generation:

1. Simulate stochastic gene dynamics of a self-activating gene in each cell given its biophysical

parameters (i.e. genotype) and initial protein level inherited from its parent in the previous

generation for 4 units of time (the cell “life span”).

2. Evaluate the fitness of each cell i based on the protein level at the end of its life span (Ai,

phenotype). The individual fitness function (ωi) is:

o
ðEÞ
i ðAiÞ ¼

�2

�2 þ ðAi � AðEÞÞ2
ð4Þ

where E = {L, H} is the current environment, A(E) is the optimal phenotype for each envi-

ronment, and �2 = 0.2 � A(E) is the width of the Lorentzian function. We define the popula-

tion fitness (w) as the average SN
i¼1
o
ðEÞ
i ðAiÞ=N over all cells.

3. Select the next generation using tournament selection [40, 41], where st cells are chosen ran-

domly from the population. The cell with highest fitness within the chosen cohort is cloned

into the new population. This “tournament” is repeated N times with replacement to create

a new population. The tournament size (st) modulates the selection pressure, where small st
is weak selection (e.g. for st = 1, there is no selection pressure and only genetic drift because

any randomly selected individual is the tournament winner). Increasing st leads to stronger

selection and a faster selective sweep of fitter cells (e.g. for st = N, only the fittest individual

in the entire population will be cloned into the next generation).

4. Allow random mutations with a fixed probability (u) in each cloned cell. If a mutation

occurs, the parameter values in the cell genotype are updated as follows:

k0  k �Mr
ffiffiffiffiffiffiffi
1� �2

1

p
cos ð�2Þ ð5Þ

n0H  nH �M
r
ffiffiffiffiffiffiffi
1� �2

1

p
sin ð�2Þ ð6Þ

K 0D  KD �Mr�1 ð7Þ

where M is the maximum fold change (mutation step-size), r* U(0, 1), ϕ1 * U(−1, 1),

and ϕ2 * U(0, 2π) are uniformly distributed random values between 0 and 1, -1 and 1, and

0 and 2π, respectively (see Methods). This spherically symmetric 3D mutation scheme per-

mits co-variation in biophysical parameters in a single mutational step, with the “distance”

to the parental genotype uniformly distributed (in the logarithmic scale) in the range

defined by the mutation step-size. Unlike additive mutation, multiplicative mutation better

reflects how mutations affect thermodynamics of protein stability, protein-DNA and pro-

tein-protein interactions [42, 43]. All mutated parameters were constrained to lie within a

physiological range that is typical for a bacterial transcription factor (see Methods).

5. If the evolutionary simulation is at the end of an epoch, then change to other environment;

otherwise keep the same environment. Return to Step 1 to simulate next generation.

Epigenetic switching allows for quick adaptation and attenuated noise
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Populations adapt to the fluctuating environment

The evolutionary model was simulated over a range of population size (N = [100, 10000]),

selection pressure (st = [3, 250]), environmental fluctuation frequency (ν = [0.01, 0.1]), muta-

tion rate (u = [0.01, 0.1]), and mutation step-size (M = [1.1, 5]). We restricted these parameters

to regions where our simulations were feasible and where epigenetic switching and genetic

adaptation were competitive with one another. For example, we only considered uN� 1; oth-

erwise, mutations were too infrequent for genetic adaptation to compete with epigenetic

switching. We verified that our results presented below were robust to alternative assumptions,

such as different models of selection, non-periodic environmental fluctuations, a Moran

model of reproduction, and alternative mutation schemes (see Methods).

To control for the possibility that bistability could be selected for reasons other than epige-

netic switching [28], we also ran a parallel deterministic simulation (CONTROL) of the

expression of the auto-activating gene in Step 1 (see Methods). Given that there is no biochem-

ical noise in our CONTROL simulations, cells in the bistable region display hysteresis and stay

in the stable state closest to the inherited parental state and never stochastically switch to the

other state (i.e. no epigenetic switching).

All populations started with a monostable genotype θ0 that was adapted to one environment

but not the other. These populations all evolved to a higher fitness solution. Initially, popula-

tions had a slightly higher geometric mean fitness per cycle Wcycle ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pg¼fcyclegwg

2=�
p

because it

accrued benefits by being adapted to the HIGH environment despite being maladapted to the

LOW environment (Fig 3A). We consider geometric mean fitness per cycle rather than fitness

per generation (w) because it better reflects the long-term growth of fitter phenotypes in natu-

ral populations [44], but analogous results are obtained considering the arithmetic mean

instead. During the LOW epoch that follows the HIGH epoch, the populations shifted towards

higher w(L) values. The epoch was too short and mutation too weak for the populations to per-

fectly adapt to the new environment before it changed again. In all cases, we observed that the

evolutionary dynamics in early epochs were dominated by noisy genetic adaptation of a popu-

lation maladapted to at least one of the environments, even if this implied decreasing Wcycle.

The “no-response” behavior, i.e. being adapted to one environment and “ignoring” the alter-

native state, is not a stable solution for this system. Consistent with previous work, this illus-

trates the importance of considering the full population dynamics in the adaptation process

and not only the long-term average fitness [45, 46].

Sub-optimal populations eventually increased the nonlinearity in gene expression hnHicycle.

For example, in a fast-fluctuating environment (ν = 0.1) with small mutation step size

(M = 1.1), the population evolved to a bistable genotype θB that used epigenetic switching (Fig

3A); nevertheless, high nH values appear in the population before transitioning from a mono-

stable to a bistable genotype (e.g. hnHi 2 [2, 3.3] and less than 10% bistable individuals per gen-

eration). In this case, the bistable genotype was a global optimum in Wcycle and adaptation

occurred in a few generations after each environmental change due to epigenetic switching.

We verified that this bistable genotype was globally optimal by re-running evolutionary simu-

lations for different initial genotypes (θ0) and for more generations. The CONTROL simula-

tions, where epigenetic switching was not available, also evolved high nonlinearity in gene

expression hnHicycle, but kept monostable genotypes (Fig 3B).

Selecting for genetic potential

Meyers et al. [38] have shown that populations in variable environments can stably evolve

to higher genetic potential, i.e. genotypes with a higher sensitivity to mutations. To explore

this possibility in our model, we took advantage of the defined mechanistic model, where for
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PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007364 October 28, 2019 8 / 28

https://doi.org/10.1371/journal.pcbi.1007364


a given steady state A� (i.e. deterministic solution of the gene expression system,
dA�
dt ¼ f ðA�Þ � gA� ¼ 0), and each value of KD and nH, the synthesis rate value k� is uniquely

defined as follows:

k� ¼
gA�ðAnH

�
þ KnH

D Þ

AnH
� þ aKnH

D
ð8Þ

Then, the optimal synthesis rate kðEÞ
�

can be calculated for each environment E with an opti-

mal phenotype AðEÞ
�

(Fig 4A and 4B).

For each solution genotype, y
ðEÞ
�
¼ fkðEÞ

�
; nH;KDg, we calculate the genetic potential as the

minimum genetic distance to adapt after an environmental transition, i.e. to reach any solution

Fig 3. Evolutionary trajectory of a population adapting to a fast fluctuating environment displays selection for high

nonlinearity. The initial population started from a non-optimal genotype (θ0) where k = 80, nH = 1, KD = 10 with evolutionary

parameters N = 10000, ν = 0.1, st = 40, u = 0.03, and M = 1.1 both under (A) the original model and (B) in the absence of biochemical

noise (CONTROL). The average KD (hKDicycle) versus the average Hill coefficient (hnHicycle) are shown for each environmental cycle

simulated, colored given the geometric mean of the population fitness per environmental cycle (Wcycle ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pg¼fcyclegwg

2=�
p

), and the

marker size corresponds to the average percentage of bistable genotypes in the population (see legend). The traces of other nine

replicas are shown in gray as a reference. Each cycle spans a LOW (dark green) and HIGH (light green) epoch and there are 500

environmental cycles over 10,000 generations for each of these simulations. The population fitness w per generation for the first and

last cycles, as well as the cycle with the minimum and maximum Wcycle are shown in the bottom for comparison, and colored

according to their Wcycle value. In both simulations (A-B), the population evolved to higher nonlinearity values hnHicycle and Wcycle.

https://doi.org/10.1371/journal.pcbi.1007364.g003
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Fig 4. Genetic potential increases around the bistable region at high nonlinearity. (A) The f(A) function for some solution genotypes are shown (see

row and column titles) exemplifying cases where (1) both y
ðLÞ
�

and y
ðHÞ
�

are monostable (i.e. the associated f(A) and γ � A intersect only once; all examples

with nH = 1, and {nH = 16, KD = 1}), (2) a bistable solution genotype with kðLÞ
�
� kðHÞ

�
({nH = 16, KD = 50}, f(A) and γ � A intersect both in A = 20 and

A = 80, with an unstable steady state between these steady states), and (3) only y
ðHÞ
�

is bistable, and not a solution for the LOW environment ({nH = 16,

KD = 120}). (B) Solution genotypes y
ðEÞ
�

per environment were calculated (Eq 8). (C) The maximum genetic potential for different values of KD and nH
(i.e. minðdMðy

ðLÞ
�
Þ; dMðy

ðHÞ
�
ÞÞjfnH ;KDg

) is shown in the colormap. As reference, the bistable solution genotypes for each environment are delimited by the

green lines: y
ðLÞ
�

as dark green, and y
ðHÞ
�

as light green. Additionally, we show as an example the population average KD and nH per cycle for ten

simulations over 10000 generations with k = 80, nH = 1, and KD = 10 as the initial genotype (red circle, θ0), and evolutionary parameters N = 10000,

u = 0.03, M = 1.1, ν = 0.10, and st = 40 (black lines), and the equivalent CONTROL simulations (i.e. without biochemical noise; gray lines). The colorbar

shows the one-mutation distance corresponding to each value of M.

https://doi.org/10.1371/journal.pcbi.1007364.g004
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genotype in the alternative environment:

dMðy
ðLÞ
�
Þ ¼ minj2yðk logMðy

ðLÞ
�
Þ � logMðy

ðHÞ
�;j ÞkÞ ð9Þ

dMðy
ðHÞ
�
Þ ¼ minj2yðk logMðy

ðHÞ
�
Þ � logMðy

ðLÞ
�;j ÞkÞ ð10Þ

When y
ðLÞ
�
� y

ðHÞ
�

(i.e. dMðy
ðEÞ
�
Þ � 0 for both environments), bistability arises and adaptation

can occur with a noise-induced epimutation (Fig 4). If there is no noise (e.g. deterministic

CONTROL), then the bistable region exhibits hysteresis and the system can only switch when

genetic adaptation forces the genotype to leave the bistable region (usually through KD

mutations).

We observed that starting from an arbitrary initial genotype θ0, populations always

migrated to a region of higher genetic potential, until the solution to the alternative state is

reachable in just one genetic mutation, if this is available. This occurred regardless of the spe-

cific evolutionary conditions (e.g. selection pressure st or environmental fluctuation frequency

ν), or the absence of noise (i.e. CONTROL simulations). In the gene expression model

described here (Eqs (1) and (2)), the genetic potential increases around the bistable region,

which occurs at high nonlinearity nH (Fig 4C). We also analyzed the double negative feedback

loop (“toggle switch”), an alternative system with the ability to display bistability and epige-

netic switching. The genetic potential of the toggle switch also increases with higher nonlinear-

ity and particularly around the bistable region (S2 Fig). This supports the generality of

our observations, as each of these systems (positive versus double negative feedback loops)

produce different bifurcation types [47]. These results show that the initial selection for high

genetic potential can drive the population to a genotypic space where bistability is available,

suggesting a potential mechanism for the initial emergence of epigenetic switches in fluctuat-

ing environments.

Notably, the region where the alternative solution is reachable in one genetic mutation

depends directly on the mutation step-size M (Eqs (9) and (10); Fig 4C). Congruently, CON-

TROL simulations with higher M values showed a higher diversity, with no obvious selection

pressure once the population is inside this optimal genetic potential region (S3 Fig). Neverthe-

less, simulations with biochemical noise resulted in more constraint genotype distributions

regardless of the specific mutation step-size.

Trade-off between adaptation time and phenotypic robustness

In all evolutionary conditions tested here, the optimal Wcycle was obtained in the high nonline-

arity regime. Nevertheless, the average Hill coefficient increased as the environmental fluctua-

tion frequency decreased (Fig 5; S3 Fig). In order to explore the evolutionary advantage of the

distinct Hill coefficient values here, we took a closer look to the population fitness.

The population fitness is always low and maladapted when the environment first changes.

Selection favors those genotypes which produce phenotypes that better match the selection

pressure in the new environment. In this first phase (the “adaptation phase”), the population

fitness one generation after each environmental change (w+1g) display higher values for faster

environmental fluctuations (i.e. large ν; Fig 5A). However, all populations eventually reach a

higher fitness and become adapted to the new environment. In this second phase (the “con-

stant phase”), purifying selection maintains the optimal phenotype against perturbations from

gene expression noise, mutations, and/or epimutation. The population fitness nine generations

after each environmental change (w+9g) display higher values for slowly fluctuating environ-

ments (i.e. small ν; Fig 5B). The population spends proportionally more time in the constant
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phase as the epoch length increases (i.e. ν decreases), which favors those strategies with robust

phenotypes (i.e. minimize frequent, maladapted phenotypes that arise from biochemical noise

and epigenetic switching). Noteworthy, higher mutation step size (M) favors a slightly higher

w+1g, while slightly decreasing w+9g, but with very similar distributions between groups and no

obvious correlation with the selected Hill coefficient (nH; Fig 5C).

Fig 5. Trade-off between minimizing adaptation time and maximizing phenotypic robustness correlates with

nonlinearity. Contour plot of the bi-variate histogram of the average Hill coefficient per epoch hnHiepoch and the

population fitness at the (A) first generation w+1g and (B) ninth generation w+9g after an environmental transition are

shown grouped by the environmental fluctuation frequency (ν). (C) An analogous plot but grouped by the mutation

step-size value (M; three example values) shows that the observed trend is related to the ν value. In all cases, the last 100

epochs of ten independent replicas were considered, each simulation running for 10,000 generations with evolutionary

parameters N = 10000, st = 40, u = 0.03 and k = 80, nH = 6 and KD = 45 as the initial genotype (θ1; this initial genotype

sped up evolutionary simulations by being closer to final selected genotypes in all simulations). In each group, the

shade area shows the bins with at least 1% of cases, and at least 5% of cases in the darker area.

https://doi.org/10.1371/journal.pcbi.1007364.g005
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These results indicate a trade-off in the evolutionary process between minimizing the adap-

tation time during the adaptation phase and increasing the robustness of the phenotype during

the constant phase. Further, the distribution of Hill coefficient values (hnHiepoch) as a function

of epoch length suggests that natural selection tunes this trade-off via this biophysical parame-

ter. We additionally corroborated the relationship between Hill coefficient value and the

expected fitness in an infinite, isogenic population (E[w(E)]); we observed that in the region of

interest in the biophysical parameter space (k� 80), E[w(E)] increases as nH increases regard-

less of the value of KD (S4 Fig). In the following section, we explore the relationship between

this fitness trade-off and the selected adaptation strategy.

Lineage analysis shows the selection of epigenetic switching in fast

fluctuating environments

In order to determine the selected adaptation strategy for each evolutionary condition, it was

informative to analyze the genealogy (i.e. lineages) of each population (see Methods). We

tracked the evolutionary history of each individual in the population to identify those lineages

that persisted with or without mutations over one full environmental cycle (i.e. LOW epoch +

HIGH epoch; S5 Fig). More than one lineage can persist over a cycle, but fewer than expected

from coalescent theory because our population is evolving under selection and faces a selective

sweep at each environmental transition [48]. If a particular adaptation strategy is successful,

then we expect those lineages using that strategy to have a higher fitness and a larger number

of progeny. The weight of each persisting lineage is proportional to the number of progeny at

the end of the cycle.

An epigenetic switch can adapt with no mutation; thus, lineages with a bistable genotype

and no mutations during a cycle were classified as following an epigenetic switching (ES) strat-

egy. On the other hand, those lineages that had at least one monostable genotype and accumu-

lated mutations during a cycle were classified as following a genetic adaptation (GA) strategy.

Lineages with only bistable genotypes that accumulated mutations during a cycle were classi-

fied as following a hybrid bistable adaptation (BA) strategy. Although some of these mutations

can be neutral, we found that most of them modulated the DNA dissociation constant (KD)

and directly affected the rate of epigenetic switching (i.e. epimutation; Fig 6A). Thus, the muta-

tion can be adaptive in the hybrid BA strategy, although the circuit remained bistable and ulti-

mately adapted through epigenetic switching.

Our lineage analysis demonstrated two propositions: (1) epigenetic switching (ES) effec-

tively allows for adaptation to fluctuating environments, outcompeting genetic adaptation,

with lineages persisting for multiple environmental cycles without mutations (S5 Fig); and (2)

distinct strategies were favored in different evolutionary conditions (Fig 6B). Consistently with

previous works, ES was the preferred strategy when the environment fluctuated frequently (i.e.

high ν values); in slowly fluctuating environments, GA was favored if the mutation step-size

(M) was large enough, otherwise BA was the dominant adaptation strategy. These trends per-

sisted over a range of different evolutionary parameters, although the boundaries shifted. For

example, increasing the selection pressure (st) or the mutation rate (u) shifted boundaries to

favor GA, whereas increasing population size (N) favored ES (S6 Fig).

Noteworthy, the fraction of bistable genotypes (hfBisim) as a function of evolutionary

parameters did not reflect the favored adaptation strategy (Fig 6D). The hfBisim never fell to

zero even when GA was the optimal lineage strategy (e.g. low ν, high M). These results arise

because of the increased seeding of genetic mutants (which is facilitated by higher M) from the

monostable to bistable subpopulation. Conversely, we expect more cases of neutral or nearly

neutral mutations in the bistable region for smaller mutational step-sizes (M). It is exactly in
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this regime where the fraction of ES parental lineages decreased whereas BA increased. How-

ever, most lineages displaying BA in this regime also persisted into the next cycle without accu-

mulating any mutations and, thus, automatically switched to ES (S7 Fig).

The dominant adaptation strategy trend (Fig 6B) highly correlates with the observed fitness

trade-off (Fig 5). Moreover, we observed a mixture of strategies across lineages, and the transi-

tion between preferred adaptation strategies as a function of ν and M was gradual. This is

expected if the described trade-off is the driving selection force. If each adaptation strategy

favors distinct aspects of the trade-off, whenever these fitness costs have similar values, genetic

drift will dominate during the selection process. As expected, the simulations in regimes with

co-dominant strategies showed high temporal variation in the fraction of adaptation strategies

each evolutionary cycle (S7 Fig).

Finally, in our CONTROL simulations with deterministic dynamics (where no stochastic

epigenetic switching can occur even if the system is bistable), none of the parental lineages

exhibit ES or BA (Fig 6C). This corroborates that the selection of ES as adaptation strategy

requires the presence of biochemical noise. In the following section, we show that, in addition

of generating epimutations, biochemical noise is also an important fitness component which

must be optimized.

The role of the noise load

The observed trade-off suggests that the cost of biochemical noise on the population plays a

fundamental role in the evolutionary dynamics. For each genotype, we define the associated

Fig 6. Each adaptation strategy is favored under different evolutionary conditions and the transition between selected

strategies is gradual. (A) Illustration of epigenetic switching (ES), bistable adaptation (BA), and genetic adaptation (GA) strategies

and underlying genotypes with fixed synthesis rate (k = 80). The bistable region of genotypic space is highlighted in pink. The

phenotype stationary distribution ρ(A, τ =1) for each genotype (θ) is shown in the inset, both in linear and logarithmic scale. BA is

bistable, as seen in logarithmic scale, but appears effectively monostable in linear scale. This arises because KD evolves each epoch to

favor one mode over the other by decreasing the relative rates of epigenetic switching between the largest and smallest mode. (B)

Each colormap shows the fraction of parental lineages using specific adaptation strategy (ES, BA, or GA) averaged over all cycles and

ten independent replica simulations for the corresponding mutation step-size (M) and environmental fluctuation frequency (ν).

Each simulation ran for 10,000 generations with evolutionary parameters N = 10000, st = 40, u = 0.03 and k = 80, nH = 6 and KD = 45

as the initial genotype (θ1). (C) Results of the CONTROL simulations where gene expression dynamics are deterministic and no

stochastic epigenetic switching can occur. All lineages exhibited GA and neither bistable strategy (ES or BA) was ever selected. (D)

The corresponding bistable fraction (hfBisim) averaged over all cycles and ten independent replica simulations for the stochastic

simulations (top) and deterministic CONTROL (bottom; same simulations than B-C, respectively).

https://doi.org/10.1371/journal.pcbi.1007364.g006
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noise load as the expected decline in fitness by the end of the cell life span:

E½1 � oðEÞt¼4� ¼ 1 � E½oðEÞt ¼ 4� ¼ 1 � S1a¼0
oðEÞðaÞ � rðA ¼ a; t ¼ 4Þ ð11Þ

given an optimal initial phenotype (i.e., ρ(A = A(E), τ = 0) = 1 and o
ðEÞ
t¼0 ¼ 1; see Methods).

Noteworthy, E½oðEÞt¼4� corresponds to the estimated fitness for an isogenic population after one

generation in a given environment excluding the cost of genetic drift (i.e. assuming infinite

population) and mutation (i.e. assuming perfect selection), then exposing the effect of the bio-

chemical noise. In our system, we observed a significant noise load for all solution genotypes

for both environments (as defined in Eq 8; Fig 7A), with an expected fitness decay of more

than 60% (E½oðEÞt¼4� � 0:4, depending on the specific genotype θ). Moreover, around and within

the bistable region –where the genetic potential is higher– the minimum noise load for each

environment occurs at higher nH values (Fig 7A), especially when the two environments are

considered (Fig 7B). Interestingly, the noise load is lower in both environments right at the

center of the bistable region, where the same genotype has steady state solutions optimal in

both environments (i.e. kðLÞ
�
� kðHÞ

�
).

How can the fitness be maximized in both environments in a bistable system? Even if the

associated stationary phenotype distribution (i.e. at long time scales, ρ(A, τ =1)) is bimodal

and well-balanced (i.e. *50% of chance of being around each mode), the genotypes with

high nonlinearity can display strong memory, and retain the parental phenotype for multiple

generations. Increasing the memory on bistable systems increases the expected fitness once the

individual displays the optimal phenotype. But this memory also directly decreases the epimu-

tation rate (Fig 7C and 7D). Consequently, there is a fundamental trade-off between minimiz-

ing noise load and maximizing adaptation potential in bistable genotypes. Moreover, the

balance between these properties depends once more on the Hill coefficient value. To further

explore this theory, we run some experiments where the environment was stopped after 1,000

generations (S8 Fig). As expected, populations in constant environment still can display bis-

table genotypes with very high nonlinearity, resulting in low noise load and high population

fitness (S8 Fig).

Similarly, this trade-off also affects the genetic adaptation strategy. In the optimal solution

space, the population requires to effectively cross the bistable region by genetic mutations

(usually mutations on KD value for our system) to adapt genetically. The width of the bistable

region increases as nH increases, reducing the probability of a beneficial mutation, and then

the genetic potential.

Discussion

Selection for higher genetic potential allows the emergence of epigenetic

switching

Starting from an arbitrary initial condition and different evolutionary conditions, all popula-

tions evolved to a similar region of the genotypic space with higher fitness (see examples in Fig

3). These final genotypes often had 20 < KD< 80, and large nH (S3 Fig). To help understand

the forces that select for large nonlinearity, we calculated the genetic potential for the distinct

genotypes available in our gene expression model (Fig 4). We observed that both in the pres-

ence or absence of biochemical noise, all populations initially selected for high genetic poten-

tial, i.e. genotypes more sensitive to genetic mutation, allowing for efficient adaptation after

each environmental transition. In our gene expression model, the genetic potential increases

around the bistable region (Fig 4), which can explain the de novo selection or emergence of

epigenetic switching starting from a non-regulated (constitutive) gene.
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Nonlinearity modulates the trade-off between adaptation potential and

phenotypic robustness

The average population fitness was mostly determined by the environmental fluctuation fre-

quency (ν), where fitness decreased as the epoch length decreased. This agrees with previous

Fig 7. Increasing nonlinearity reduces the noise load in the bistable region, decreasing also the epimutation rate. (A) The noise load (Eq 11) is

calculated for the solution genotypes y
ðEÞ
�

for each environmental state, LOW and HIGH. (B) The maximum noise load comparing y
ðEÞ
�

in both

environmental states for each value of nH and KD (with kðEÞ
�

depending on the environment being considered). (C) The probability of an individual with a

solution genotype y
ðLÞ
�

(or y
ðHÞ
�

) and initial phenotype A(L) (or A(H)) has a good fitness score ω in the alternative environment at the end of the generation,

i.e. ω(H)(Aτ=4)� 0.5 (or ω(L)(Aτ=4)� 0.5), which is considered as a LOW!HIGH “epimutation” (or HIGH! LOW “epimutation”). (D) The minimum

probability of “epimutation” comparing y
ðEÞ
�

in both directions, LOW!HIGH and HIGH! LOW, for each value of nH and KD (with kðEÞ
�

depending on

the environment being considered). Values less or equal to 10−6 are omitted. Same range of values and bistable region lines as in Fig 4.

https://doi.org/10.1371/journal.pcbi.1007364.g007

Epigenetic switching allows for quick adaptation and attenuated noise

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007364 October 28, 2019 16 / 28

https://doi.org/10.1371/journal.pcbi.1007364.g007
https://doi.org/10.1371/journal.pcbi.1007364


theoretical work, which showed that the evolutionary dynamics are governed by environmen-

tal dynamics [16, 31]. In our simulations, the correlation between fitness and epoch length

arises from the balance between two competing fitness costs: reducing the time required to

adapt every time the environment changes (adaptation phase; Fig 5A) and increasing the phe-

notypic robustness when the environment is fixed (constant phase; Fig 5B). Our work suggests

that the trade-off between adaptation time and phenotypic robustness is mostly modulated by

the nonlinearity level (Fig 5).

To fully understand this relationship, we estimated the noise load, defined here as the

expected decay in the fitness arising just from the biochemical noise, for the distinct genotypes

available in our gene expression model (Eq 11; Fig 7A and 7B). We show that around the

region where the genetic potential is higher, the noise load is lower for higher Hill coefficient

values (nH) regardless of the specific environmental state (LOW or HIGH), or whether the

genotype is bistable. Nevertheless, in this region of the genotypic space, a fundamental trade-

off exists between minimizing the noise load in a population (Fig 7A and 7B) and maximizing

the adaptation potential, either through genetic adaptation (i.e. genetic potential; Fig 4) or epi-

genetic switching (i.e. epimutation probability; Fig 7C and 7D).

Epigenetic switches are superior in fast fluctuating environments

Previous theoretical work established that optimal long-term growth occurs when the pheno-

type switching rate matches the environmental switching rate [16–19]. The phenotype could

switch either due to genetic adaptation with a rate that depends on the mutation rate and

mutation step-size, or due to epigenetic switching (epimutation) with a rate determined by the

underlying molecular system. In the natural world, epimutation rates are often faster than

genetic mutation rates [12], which suggests that fast fluctuating environments might select for

epigenetic switching (ES) over genetic adaptation (GA). Previous models did not integrate and

evaluate these two competing processes in a population of cells evolving in a fluctuating

environment.

Our simulations confirmed that ES consistently emerges in fast fluctuating environments

(Fig 6). In agreement with Soyer and colleagues [28, 37], our populations evolved to genotypes

with high nonlinearity (Fig 5; S3 Fig). However, we found that bistable genotypes (ES and BA)

were only favored in the presence of biochemical noise, and in CONTROL simulations only

GA was observed (Fig 6C). Moreover, the trade-off highlighted above reliably predicts the con-

ditions under which an epigenetic switch was able to outcompete genetic adaptation. The ES

strategy is selected at high ν (when the population spends proportionally more time in the

adaptation phase) because it has a faster adaptation time (Fig 5A) at the cost of lower pheno-

typic robustness (Fig 5B). Nevertheless, the genetic potential map (Fig 4) shows that GA can

potentially adapt quickly (especially for larger mutation step-size M), but these trajectories lie

in noisy regions of the genotypic space, resulting in an even higher noise load (Fig 7). There-

fore, we conclude that ES is selected over GA in fast fluctuating environments because this

strategy minimizes adaptation time through epimutation while still reducing the noise load in

the system.

Lineages reveal hidden selection forces & epigenetic switching persistence

All evolved bistable and monostable genotypes were relatively close to each other (Fig 6A).

Our simulations had a relatively high mutation rate (u) such that bistable genotypes could

mutate to monostable genotypes, and vice versa. The elevated rate of seeding between these

subpopulations made it challenging to distinguish whether ES (bistable) was being selected for.

It has been shown previously that individual history or genealogy can efficiently reveal hidden
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selection forces. For example, Kussell and colleagues [34, 49] demonstrated that selective pres-

sures on a population, such as those imposed by a fluctuating environment, can be efficiently

quantified by measurements on the surviving lineages. More recently, Cerulus et al. [50] used

life-history traits of cellular growth to show that high single-cell variance in growth rate can be

beneficial for the population, and that this benefit depends on the epigenetic inheritance of the

growth rate between mother and daughter cells.

To this end, we analyzed the strategy of lineages across multiple cycles during our simula-

tions. Lineage analysis demonstrated that apparent coexistence of bistable and monostable

subpopulations was a transient phenomenon, and one type of strategy was typically dominant

across lineages (Fig 6B and 6C). Moreover, the persistence of well-adapted lineages without

genetic mutations effectively proved that epigenetic switching can outcompete genetic adapta-

tion in fluctuating environments. Our analysis suggests that population snapshots (e.g.

bimodal versus unimodal distribution of phenotypes) can miss the contribution of epigenetic

switching (Fig 6D). Future experimental studies on the evolution of epigenetic switches might

consider analyzing lineages using time-lapse microscopy, as done by Balaban et al. [13].

Model limitations and future directions

We verified that our observations were robust to many alternative model assumptions (S9

Fig). Nevertheless, our simple model of a haploid, asexual population [51] omits some features

of the evolutionary process. For example, variable population size, diploid genetics, sexual

reproduction and linkage disequilibrium could all affect the evolutionary dynamics and selec-

tion of epigenetic switches in a fluctuating environment. Our model also fixed the mutation

rate (u) and step-size (M), which imposes a mutational load when the population is adapted to

a constant environment. Future simulations could allow natural selection to mutate and tune

these parameters, which might favor genetic adaptation over epigenetic switching [52]. Our

model also did not consider the case where mutations (e.g. adaptive mutation) or biophysical

parameters (e.g. phenotypic plasticity) directly respond to changes in the environment. Last,

we assumed that mutations continuously increase or decrease the biochemical parameters.

This overlooked an important class of mutations, such as indels (i.e. rapid loss or abrupt

change of function), gene duplication, and gene recruitment, which could abruptly change the

topology of the gene network.

We considered the simplest genetic circuit that can exhibit epigenetic switching. However,

alternative gene regulatory networks could generate different dynamics and phenotypes that

are even better adapted to the fluctuating environment. For example, adding a negative feed-

back loop could reduce gene expression noise [53, 54] or generate oscillations [55, 56]. An

oscillatory gene circuit (e.g. circadian clock) might anticipate and respond to an environment

that fluctuates regularly (e.g. day/night). Future research will explore more complicated gene

regulatory circuits to understand the specific environmental dynamics and evolutionary con-

ditions that favor oscillation versus epigenetic switching in the context of genetic adaptation.

This should be of broad relevance to evolutionary biologists and systems biologists.

Methods

Biophysical parameters

The maximum synthesis rate k and the degradation rate γ depend on time. With no loss of

generality, we reduced the number of free parameters in our model by substituting time t with

a time-dimensionless variable τ = t � γ. Many proteins in bacteria are not actively degraded and

are diluted through cell growth and division. Thus, τ and k are in units of cell cycle time. With

no loss of generality, we used τ = 4 in all our stochastic simulations. All mutated parameters
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were constrained to lie within a physiological range (10−2� k� 103, 10−2� nH� 16, 10−2�

KD� 120) for a bacterium such as E. coli. The number of molecules for a transcription factor

ranges between 0 − 103 proteins per bacterium or concentration range 0 − 103 nM for a bacte-

rial volume of 1 fL [57, 58]. The DNA dissociation constant (KD) has a similar range to the

underlying transcription factors [58, 59].

Gillespie algorithm

The propensity or probability rate (rj) of chemical reaction j occurring during the next interval

dt is related to the rates of mass-action chemical kinetics in a constant chemical reactor volume

V. In our simple biochemical network, the propensity of protein synthesis is f(A) and the pro-

pensity of protein degradation is γ � A. Each step, given the current number of chemical spe-

cies, Gillespie’s direct algorithm first calculates the propensities rj and then calculates when the

next reaction occurs and which one occurred. The waiting time of the next reaction is drawn

from an exponential distribution with parameter Sjrj, where the cumulative distribution func-

tion of any reaction occurring before time τ� is Fðt�Þ ¼ 1 � e� ðSjrjÞ�t� . Given that a reaction has

occurred at time τ�, the probability that the event is reaction i is equal to ri/(Sj rj). Thus, for

each iteration, two random numbers are required to determine τ� and i as drawn from the

probability distributions. The random numbers are generated using the “Minimal” random

number generator of Park and Miller with Bays-Durham shuffle and added safeguards [60].

Deterministic CONTROL simulations

The dynamic of the mean concentration (A) obeys a first-order ordinary differential equation:

dA
dt
¼ f ðAÞ � g � A ð12Þ

The cell life span was assumed to be long enough for steady state (where Eq 12 equals 0) to

be reached before selection. We used numerical methods to calculate the steady state solution

(phenotype) for any genotype and initial protein level inherited from the parent. All Gillespie,

deterministic, and evolution simulations were implemented in C++ (https://github.com/

mgschiavon/EpiEvoDynamics/releases), and all the analyses and figures were done using

MATLAB.

Alternative model assumptions

We tested the robustness of our results to alternative choices and assumptions in the evolu-

tionary model.

Environmental fluctuations. Our fluctuations were regular and periodic with frequency

ν. We tested whether stochastic fluctuations with frequency ν produced different results, even

though previous work demonstrated little difference between the two types of fluctuations [5,

17, 19, 20]. Our simulations confirmed that periodic and stochastic environmental fluctuations

generate the same qualitative trends (S9 Fig).

Selection algorithms. We used tournament selection to select the next generation of cells

based on the fitness of the individuals in the current generation. Other common selection

schemes are Truncation, Proportional, and Weighted selection [61]. These selection schemes

produced similar results to tournament selection (S9 Fig). We also obtained similar results

with a Moran model (S9 Fig), where the birth and death events are treated as continuous, sto-

chastic events instead of non-overlapping generations (as in our modified Wright-Fisher

model).
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Fitness of phenotypes. Our simulations evaluated the protein number (phenotype) at the

end of Gillespie simulation (individual life span) to calculate a fitness score given by a Lorent-

zian function centered at the optimal phenotype. We also used the average protein number or

the distribution of protein numbers over the individual life span as phenotypes; our results did

not qualitatively change (S9 Fig). We also changed the shape of the fitness function from a Lor-

entzian to a Gaussian or a step-like function with similar width; the results did not qualitatively

change (S9 Fig).

Mutations. Our simulations used a spherically symmetric 3D mutation scheme to permit

co-variation in biophysical parameters in a single mutational step. The mutation step size was

determined by the radius of the spherical mutation, which was a uniformly distributed random

value between 0 and 1 (r* U(0, 1)). Such a radial density produces a non-uniform density of

mutations with highest densities close to the parental phenotype because volume scales as r3.

We tested homogeneous spherical mutation by substituting r in Eqs (5)–(7)) with
ffiffi
r3
p

and a

homogeneous cubic mutation where three uniformly distributed random value between -1

and 1 (ri* U(−1, 1)) for each biophysical parameter. Both mutation schemes produced the

same qualitative results (S9 Fig). We also verified that mutating only one parameter at a time

(1D mutation) and increasing the range of biophysical parameters to allow higher nonlinearity

(10−2� nH� 24) and weaker DNA dissociation constants (10−2� KD� 103) did not funda-

mentally change our results.

Timescales of epimutation and stochastic gene expression. The rate of epimutation is

sensitive to the frequency and magnitude of stochastic events. The magnitude of stochastic

events is inversely proportional to the total number of molecules. Thus, we expect a higher rate

of epimutation for smaller numbers of molecules. The rate of epimutation should also increase

as the two modes become closer. Thus, we expect a higher rate of epimutation for larger α.

Last, the protein degradation rate (γ) sets the timescale between stochastic events (i.e. faster

protein degradation leads to more stochastic events per unit time during a Gillespie simula-

tion). Thus, we expect a higher rate of epimutation for larger γ. In all tested cases, a higher rate

of epimutation favored ES over GA (S9 Fig).

Matching α and the ratio of optimal phenotypes. At high levels of nonlinearity, the low-

est protein level is k � α and the highest protein level is k. A bistable, epigenetic switch has two

solutions, each well-adapted to one of the environments only when the ratio R = A(L)/A(H) = α
(S1 Fig). Any mismatch between α and R will disfavor epigenetic switching because an epimu-

tation from an adapted mode will jump to a maladapted mode, after which the descendants

must accumulate genetic mutations to further adapt. Although our simulations fixed R = α =

0.25, we verified that variable α evolved to ES with α� R in fast fluctuating environments

(high ν; S10 Fig).

Lineage analysis

An unfit mutant could arise at the end of a cycle or a fit genotype might go extinct due to

genetic drift and gene expression noise. To obtain insights on the evolutionary stability of dif-

ferent strategies, we focused our analysis on lineages that have persisted –with or without

mutations– through at least one full environmental cycle (i.e. LOW epoch + HIGH epoch).

We maintained genealogical records and traced the lineage and ancestral genotype of all cells

over 2 cycles (S5 Fig). If any genotype between the 1-cycle and 2-cycle ancestors was mono-

stable, then we classified the evolutionary strategy of that lineage as genetic adaptation (GA). If

all genotypes between the 1-cycle and 2-cycle ancestors were bistable, then we classified the

evolutionary strategy as either epigenetic switching (ES) or bistable adaptation (BA). The line-

age was BA only if the 1-cycle bistable ancestor had accumulated at least one mutation since
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the 2-cycle bistable ancestor. At the end of each cycle, we calculated the fraction of surviving

cells whose ancestors had one of these 3 strategies (GA, ES, BA) and averaged over all cycles

(Fig 6). Each individual ancestral lineage was counted regardless of whether it was shared with

other individuals or not.

To determine the transition rate between evolutionary strategies, we analyzed lineages back

to the 3-cycle ancestor. We calculated the statistics of transitions between adaptation strategies

by comparing strategies in 1-cycle and 2-cycle ancestors (current adaptation strategy) versus

2-cycle and 3-cycle ancestors (previous adaptation strategy) and averaged over all cycles (S7

Fig).

Noise load and “epimutation” probability

The Finite State Projection (FSP) method [62] allows the estimation of a probability distribu-

tion ρ(A, τ) at any specific time τf having an initial distribution ρ(A, 0) and state reaction

matrix B(θ):

rðA; tf Þ ¼ expðBðyÞ � tf Þ � rðA; 0Þ: ð13Þ

Assuming an individual with genotype θ was selected in the previous generation with the

optimal phenotype for the environment ES, i.e. ρ(A = A(ES), 0) = 1, ρ(A, τ = 4) reflects the phe-

notype probability distribution of the individual at the end of the following generation. This

phenotype distribution can be used to calculate the expected fitness of a genotype θ with per-

fect selection and no genetic mutation, isolating the effect of biochemical noise. Then, we

define the genotype’s noise load as the expected decay on fitness at the end of the cell life span

(Eq 11; Fig 7A and 7B). Additionally, the probability that an individual selected in one envi-

ronment ES displays high fitness in the alternative environment EA (e.g. wðEAÞi � 0:5) was

used as an approximation of the epimutation probability of epigenetic switches (Fig 7C and

7D).

Supporting information

S1 Fig. Deterministic steady states and stochastic stationary distributions of protein

numbers given the biophysical parameters of a self-activating gene. (A) The effect of

the maximum synthesis rate (k) and the affinity constant (KD) over the deterministic

steady state solutions of the protein expression of a self-activating gene (i.e.
dA�
dt ¼ f ðA�Þ � A� ¼ 0, f ðA�Þ ¼ A�, where f ðAÞ ¼ kðaþ ð1 � aÞ AnH

AnHþKnH
D
Þ) in the limit of

high Hill coefficients (nH!1). If KD< αk the system is monostable HIGH with the protein

expression steady state (A�) equal to k; on the other hand, if KD> k then the system is mono-

stable LOW with A� = αk. When αk� KD� k is intermediate, these two steady states coexist

and the system is bistable. (B) Bifurcation diagram of the protein steady states as the Hill coeffi-

cient (nH) varies while keeping the rest of the biophysical parameters fixed. As nH value

increases, the system goes from monostable (blue dots) to bistable (violet and pink dots). As

nH!1, the stable steady states monotonically approach their limiting values, αk and k
(dashed gray lines), and the unstable steady state asymptotically approaches KD (dotted

gray line). We show a few examples of the stationary distribution of the protein expression

(ρ(A, τ =1)) for stochastic simulations with intrinsic biochemical noise (bottom). As nH
approaches the bifurcation point (where the system passes from being monostable to bistable)

the stationary distribution becomes wider (i.e. the phenotype is more variable). In the bistable

region, even if the two modes of the stationary distribution do not change much, their relative

weights can be significantly affected by the value of the unstable steady state, as stochastic
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transitions from one stable mode to the other become more or less probable.

(TIF)

S2 Fig. Genetic potential increases around the bistable region at high nonlinearity for a

toggle switch model. Here we consider an alternative model that can produce bistability and

then epigenetic switching based on a toggle switch:

dA
dt

¼ kA � aA þ ð1 � aAÞ
KnA

A

KnA
A þ BnA

� �

� g � A

dB
dt
¼ kB � aB þ ð1 � aBÞ

KnB
B

KnB
B þ AnB

� �

� g � B

with αA = 0.25, kB = 50, αB = 0.2, KB = 20, nB = 5, γ = 1, and A is still the molecule to be

regulated and selected. In this model f ðAÞ ¼ kA � aA þ ð1 � aAÞ
KnA
A

KnA
A þB

nA
�

� �
, with

B� ¼
kB
g
� aB þ ð1 � aBÞ

KnB
B

KnB
B þA

nB

� �
. Analogous to the main model (Eq 8), the solution genotype

can be calculated as the values of KA and nA vary:

kA� ¼
gA�
f ðA�Þ

(A) The f(A) function for some solution genotypes are shown (see row and column titles),

exemplifying cases where (1) both y
ðLÞ
�

and y
ðHÞ
�

are monostable (i.e. the associated f(A) and γ �
A intersect only once; all cases with nA = 1 and {nA = 16, KA = 1}), (2) a bistable solution geno-

type with kðLÞA� � kðHÞA� ({nA = 16, KA = 12}; f(A) and γ � A intersect both in A = 20 and A = 80),

and (3) only y
ðLÞ
�

is bistable, and not a solution for the HIGH environment ({nA = 16, KA = 44}).

(B) The solution genotypes y
ðEÞ
�
¼ fkðEÞA� ; nA;KAg per environment are shown. (C) The maxi-

mum genetic potential for different values of KA and nA (i.e. minðdMðy
ðLÞ
�
Þ; dMðy

ðHÞ
�
ÞÞj
fnA ;KAg

) is

shown in the colormap. As reference, the bistable solution genotypes for each environment are

delimited by the green lines: y
ðLÞ
�

as dark green, and y
ðHÞ
�

as light green. The colorbar shows the

one-mutation distance corresponding to each value of M.

(TIF)

S3 Fig. Distribution of population average Hill coefficient values as mutation step-size M
and environmental fluctuation frequency ν varies. Each line corresponds to the occurrence

of the population average Hill coefficient hnHi in the last 5,000 generations of ten replicas of

10,000 generations simulation with evolutionary parameters: N = 10000, u = 0.03, st = 40, and

k = 80, nH = 6, and KD = 45 as the initial genotype (θ1). The color determines the M value used,

each row corresponds to different values of ν, and the right column shows the equivalent

CONTROL simulations (i.e. without biochemical noise).

(TIF)

S4 Fig. Increasing nH increases the expected fitness in both environments. (A) Contour

plots as a function of biophysical parameters with fixed k = 80 where the steady states (A�)
for LOW are A(L) ± 1% (dark green) and for HIGH are A(H) ± 1% (light green). (B) Effect of nH
in the expected fitness at the end of the cell life span (E½oðEÞt¼4jA0 ¼ AðEÞ� ¼ S1a¼0

oðEÞðaÞ�
rðA ¼ a; t ¼ 4Þ), starting with the optimal phenotype for each environment, k = 80 and KD as

shown in the legend. In all cases, E½oðEÞt¼4jA0 ¼ AðEÞ� increased as nH increases. Noteworthy, for

bistable solution genotypes (e.g. k = 80 and KD = {40, 50}), E½oðEÞt¼4jA0 ¼ AðEÞ� increases for both

environments (even if at different rates) as nH increases. The expected phenotype distribution
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ρ(A, τ = 4) was estimated numerically for each set of biophysical parameters (see Methods).

(TIF)

S5 Fig. Lineage analysis of cells evolving in a fluctuating environment. At the end of each

cycle (LOW epoch + HIGH epoch), we analyzed the genealogy of cells over the past two cycles.

All cells were classified based on the evolutionary strategy used by their 2-cycle ancestor over a

full cycle (bigger dots). The top bars show the environmental state per epoch (dark green for

LOW, light green for HIGH). We plot the number (#) of distinct lineages (solid line) and geno-

types (dotted line) as a function of past generations on the top row. The middle rows plot the

corresponding genotypes θ and the bottom shows the individual ancestral lineages. Ancestral

genotypes can be bistable (violet) or monostable (blue). (A) Example of lineage analysis of cells

that use epigenetic switching (ES) strategy for ν = 0.1 and M = 5, i.e. their 2-cycle ancestors

were fully bistable and persisted a full cycle without mutations. Note that there are distinct lin-

eages with identical genotypes. (B) Example of lineage analysis of cells that use bistable adapta-

tion (BA) strategy for ν = 0.04 and M = 1.4, i.e. their 2-cycle ancestors were fully bistable but

accumulated mutations over the next cycle. (C) Example of lineage analysis of cells that use

genetic adaptation (GA) strategy for ν = 0.01 and M = 5, i.e. their 2-cycle ancestors had mono-

stable genotypes and accumulated mutations over the next cycle. In all cases, we used

N = 4000, st = 40, and u = 0.03.

(TIF)

S6 Fig. Increasing selection pressure or mutation rate favors genetic adaptation, where as

increasing population size favors epigenetic switching. Each colormap shows the average

fraction of parental lineages using each adaptation strategy (epigenetic switching, ES; bistable

adaptation, BA; genetic adaptation, GA) for the same range of mutation step-size (M) and

environmental fluctuation frequency (ν) as Fig 6. Evolutionary parameters used in main text

(st = 40, N = 10000, u = 0.03) are highlighted in red boxes. (A) The effect of only changing the

selection pressure (st) over three evolutionary replicas (N = 10000, u = 0.03). (B) The effect of

only changing the population size (N) over three evolutionary replicas (st = 40, u = 0.03). (C)

The effect of only changing the mutation rate (u) over three evolutionary replicas (st = 40,

N = 10000). All simulations ran 10,000 generations with k = 80, nH = 6, KD = 45 as the initial

genotype θ1.

(TIF)

S7 Fig. Transitions between adaptation strategies as a function of evolutionary parameters.

The colormaps show the percentage of ancestral lineages that displayed one adaptation strat-

egy (current adaptation strategy) and other adaptation strategy in the preceding ancestral line-

age (previous adaptation strategy). These statistics were calculated for ten evolutionary replicas

for mutation step-size (M) and environmental fluctuation frequency (ν). Each simulation was

run 10,000 generations with evolutionary parameters N = 10000, st = 40, u = 0.03 and k = 80,

nH = 6, and KD = 45 as the initial genotype θ1. For fast fluctuating environments (large ν) and

large mutation step size (M), most lineages displaying bistable adaptation (BA) as the current

adaptation strategy used epigenetic switching (ES) in the previous cycle; this suggests that the

stochasticity of the evolutionary dynamics is constantly feeding this subgroup. Moreover, most

of the lineages using BA in the previous cycle that persisted another full cycle did it without

accumulating any new mutation (i.e. using ES), suggesting the mutations occurring in the pre-

vious cycle were actually neutral. For slow fluctuating environments (small ν) and small muta-

tion step size (M), most of the lineages used BA as the current and previous strategy, or

transitioned between strategies (i.e. values not in the diagonal), suggesting the occurrence of

the other strategies was just transitive, and constantly fed by the stochasticity of the process.
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Finally, in the “borders” between the regions where each strategy was dominant (e.g. interme-

diate M values for small ν), high transition rates as well as higher numbers in the diagonal

occurred, congruently with the hypothesis that in these conditions the strategies have similar

fitness cost and then a similar probability of being selected.

(TIF)

S8 Fig. Minimizing noise load drives selection in constant environment. A simulation exem-

plifying the evolutionary dynamics of a population if the environment suddenly stops fluctuat-

ing. The simulation was run for 10,000 generations with evolutionary parameters N = 10000,

st = 40, u = 0.03, M = 1.1, and k = 80, nH = 6, and KD = 45 as the initial genotype θ1; the environ-

ment fluctuates the first 1,000 generations with frequency ν = 0.1, and then remains constant in

the LOW state (A(L) = 20). (A) The population fitness (w) and fraction of bistable genotypes

(fB) for each generation (g) are shown. Once the environment stops fluctuating (g� 1000), w
value increases with respect to the maximum value observed in the fluctuating environment

(compared to both LOW —dark green bar— or HIGH —light green bar— environment

epochs; see inset); nevertheless, once in the constant environment, fB values vary widely

between generations with no major effect on w. (B-D) Phenotype distributions for the average

genotype (hki, hnHi, hKDi; see boxes) in the population at several time points in the simulation

(see legend) at (B) stationary state, or at the end of the life time (τ = 4) assuming the initial phe-

notype is either (C) A0 = 20 (the optimal value for the constant environment in this example)

or (D) A0 = 80. In general, the population moves towards even higher nonlinearity values (nH)

once the environment stops fluctuating, displaying sharper unimodal phenotype distributions

around the optimal phenotype (C), which results in the higher population fitness w observed.

Noteworthy, this observation holds for both monostable and bistable underlying genotypes,

and regardless of the potential memory of the bistable genotypes if the initial genotype was in

the alternative steady state (A(H) = 80; see panel D). Similar results were obtained for different

evolutionary conditions. If the population starts in a monostable genotype (θ0 = {k = 80, nH =

1, KD = 10}), as expected the population often keeps monostable genotypes faraway from the

bistable region when the environment stops (particularly for small M values).

(TIF)

S9 Fig. The same qualitative trends on the selection of adaptation strategies per evolution-

ary condition is maintained in a wide variety of alternative model assumptions. Each color-

map shows the population average fraction of parental lineages using each adaptation strategy

(epigenetic switching, ES; bistable adaptation, BA; genetic adaptation, GA) for the same range

of mutation step-size (M) and environmental fluctuation frequency (ν) as in Fig 6. Differences

in assumptions or parameters are listed above each plot. All values are the average of three evo-

lutionary replicas of simulations run 10,000 generations with N = 4000, st = 40, u = 0.03 and

k = 80, nH = 6, and KD = 45 as the initial genotype θ1. The exceptions are the weighted and

proportional selection schemes where the selection pressure (st) cannot be tuned. When

the basal activity (α) was changed, we adjusted the low optimal phenotype such that A(L) =

α � A(H), where A(H) = 80. See S2 Appendix for an explicit description of assumptions or

parameters.

(TIF)

S10 Fig. Allowing basal activity (α) to evolve does not qualitatively change our results.

(A) Each colormap shows the fraction of parental lineages using a specific adaptation strategy

(ES, BA, or GA) averaged over all cycles and three independent replica simulations for the cor-

responding mutation step-size (M) and environmental fluctuation frequency (ν). Each simula-

tion ran for 10,000 generations with evolutionary parameters N = 10000, st = 40, u = 0.03 and
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k = 80, nH = 6, KD = 45 and α = 0.25 as the initial genotype (θ1). The corresponding (B) bistable

fraction (hfBisim) and (C) basal activity parameter (hαisim) averaged over all cycles and three

independent replica simulations (same simulations than in panel A). For some examples, the

dynamics over time for the geometric mean fitness per cycle (Wcycle), and the average basal

activity (hαicycle), as well as the fraction of parental lineages using either ES or BA as the adapta-

tion strategy per cycle, are shown: (D) ν = 0.1 and M = 5; (E) ν = 0.04 and M = 1.1; (F) ν = 0.01

and M = 5; and (G) ν = 0.01 and M = 1.7. When a bistable system is selected (for either ES or

BA adaptation strategies), α� 0.25. On the other hand, α does not show a clear selection pres-

sure when GA is the selected adaptation strategy.

(TIF)

S1 Appendix. Supplementary table: Previous works.

(PDF)

S2 Appendix. Alternative assumptions details.

(PDF)
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