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Table S1: Related to Figures 2, 3, 4, 6, and 7. Simulation parameter values used in main figures.

βI βP βD µ η θ γ1 βC γC KC βP∗
Fig. min−1 min−1 min−1 min−1 nM−1 min−1 min−1 min−1 nM nM nM

min−1 min−1

2A 0.06 0 0 1 0.01 0.3 0.1 0.1‡ 0.1 – –
2B 0.06 0 0 1 0.01 0.3 0.1 0.1‡ 0.1 300 90
2C 0.06 0 0 1 0.01 0.3 0.1 0.1‡ 0.1 – 90
2D 0.06 0.3 0 1 0.01 0.3 0.1 0.1‡ 0.1 – –
3A 0.06 0 0.56 1 0.01 0.3 0.1 0.1‡ 0.1 – –
3B 0.06 0 0.56 1 0.01 0.3 0.1 0.1‡ 0.1 – –
3C 0.06 0 0.56 1 0.01 0.3 0.1 0.1‡ 0.1 – –
3D 0.06 0.15 0.28 1 0.01 0.3 0.1 0.1‡ 0.1 – –
4 0.06 0.15 0.28 1 0.01 0.3 0.1 0.1 0.1 – –
6 † † † 1 0.01 0.3 0.1 0.1‡ 0.1 – –
7A 0.0576∗ 0 0 1 – 0.3 0.1 0.1‡ 0.1 – –
7B 0.0576∗ 0.15 0.28 1 – 0.3 0.1 0.1‡ 0.1 – –

γA0 βA γA γM KA KM βM∗ βM βZ γZ KZ

Fig. min−1 min−1 min−1 min−1 nM nM nM min−1 min−1 min−1 nM
min−1

2A – – – – – – – – – – –
2B – – – – – – – – – – –
2C – – – – – – – – – – –
2D – – – – – – – – – – –
3A 0.1 1.5 1.5 1.5 1 1 – 0.4167 – – –
3B 0.1 1.5 1.5 1.5 1 1 125 – – – –
3C 0.1 1.5 1.5 1.5 1 1 – 0.4167 – – –
3D 0.1 1.5 1.5 1.5 1 1 – 0.4167 – – –
4 0.1 1.5 1.5 1.5 1 1 – 0.4167 – – –
6 0.1 1.5 1.5 1.5 1 1 – 0.4167 – – –
7A – – – – – – – – 4 2 1
7B 0.1 1.5 1.5 1.5 1 1 – 0.4167 4 2 1

‡ Unless directly perturbed (e.g. βC = [0.1, 0.15, 0.2] min−1).
† Multiple values (shown in the figure) were tested.
∗ Corresponds to βI∗ parameter in the alternative PID system (see Section “Constructing a PID controller
with a different integral controller architecture”).



Z
1

Z
2

X
1

X
C

A

M

C

0 50 100 150 200

Minutes

0

500

1000

1500

2000

2500

3000

C
o
n
c
e
n

tr
a
ti

o
n
 [

n
M

]

Minutes

Z
2
 [

n
M

]

2
x104

1

0 100 200

�P = 1 min-1

D

0 50 100 150 200

Minutes

0

500

1000

1500

2000

2500

3000

C
o
n
c
e
n

tr
a
ti

o
n
 [

n
M

]

Minutes

Z
2
 [

n
M

]

2
x104

1

0 100 200

�D = 1.5 min-1

E

0 50 100 150 200

Minutes

0

500

1000

1500

2000

2500

3000

C
o
n
c
e
n

tr
a
ti

o
n
 [

n
M

]

Minutes

Z
2
 [

n
M

]

2
x104

1

0 100 200

�P=0.5 min-1
�D=0.75 min-1

F

0 100 200 300 400

Minutes

0

500

1000

1500

2000

2500

3000

C
o
n
c
e
n

tr
a
ti

o
n
 [

n
M

]

Minutes

Z
2
 [

n
M

]

1
x104

0.5

0 200 400

�P = 0.3 min-1
�C = 0.2 min-1

A

0 50 100 150 200

Minutes

0

500

1000

1500

2000

2500

3000

C
o
n
c
e
n

tr
a
ti

o
n
 [

n
M

]

Minutes

Z
2
 [

n
M

]

2
x104

1

0 100 200

fP=�P*

�·KC

�·KC+�XC

Y = 60 nM �P* = 90 nM min-1

B

0 50 100 150 200

Minutes

0

500

1000

1500

2000

2500

3000

C
o
n
c
e
n

tr
a
ti

o
n
 [

n
M

]

Minutes

Z
2
 [

n
M

]

2
x104

1

0 100 200

M synthesis rate: �M*

Y = 60 nM �D = 0.56 min-1

Figure S1: Related to Section “Design of a proportional control term”, Section “Design of a derivative control term”, and
STAR Methods “Bounds on antithetic integral control with P and D terms”. Suboptimal performance occurs when the

proportional or derivative controllers are too strong. Z2 levels increase linearly over time when the (A,C) proportional,

(B,D) derivative, or (E) a combination of these are too strong and the production of Z1 is too small to compensate for the
production of Z2. This occurs, for example, for low Y set-point values. In all plots the state variables reach a steady-state

except for Z2. (A,B) Plots of all state variables for controllers in which the proportional (A) or derivative (B) terms do not

scale with the set-point Y . In these cases, Y = 60 nM is too small for the strength of the proportional and derivative functions,
respectively (see Figure 2A and Figure 3B). (C-E) Plots of all state variables for controllers PI and ID designed in this work, in

which controller scales with set-point Y . When βP and βD, or a combination of these, are too high, loss of integral function is

also observed. (F) When αP 6= µ/θ is too high (see Figure S2C), loss of integral control also occurs. See Table S2 for parameter
values used in each simulation.



Table S2: Related to Sections “Design of a proportional control term”, “Design of a derivative control term”, and “Linear
perturbation analysis of nonlinear PID control design provides analytical support for the design”, and Figures 2, 3, and 4.
Simulation parameter values used in supplementary figures.

βI βP βD µ η θ γ1 βC γC εC αP
Fig. min−1 min−1 min−1 min−1 nM−1 min−1 min−1 min−1 nM nM

min−1 min−1

S1A 0.06 0 0 1 0.01 0.3 0.1 0.1 0.1 – –
S1B 0.06 0 0.56 1 0.01 0.3 0.1 0.1 0.1 – –
S1C 0.06 1 0 1 0.01 0.3 0.1 0.1 0.1 – –
S1D 0.06 0 1.5 1 0.01 0.3 0.1 0.1 0.1 – –
S1E 0.06 0.5 0.75 1 0.01 0.3 0.1 0.1 0.1 – –
S1F 0.06 0.3 0 1 0.01 0.3 0.1 0.2 0.1 – 5
S2B 0.06 0.3∗ 0 1 0.01 0.3 0.1 0.1‡ 0.1 500 –
S2C 0.06 0.3∗ 0 1 0.01 0.3 0.1 0.1‡ 0.1 – [...]∗∗

S3A 0.06 0.3 0 1 0.01 0.3 0.1 0.1‡ 0.1 – –
S3B 0.06 0.55 0 1 0.01 0.3 0.1 0.1‡ 0.1 – –
S3C 0.06 0.7 0 1 0.01 0.3 0.1 0.1‡ 0.1 – –
S5 † † † 1 0.01 0.3 0.1 0.1‡ 0.1 – –
S6A 0.06 0 0 1 0.01 0.3 0.1 0.1‡ 0.1 – –
S6B 0.06 0.3 0 1 0.01 0.3 0.1 0.1‡ 0.1 – –
S6C 0.06 0 0.56 1 0.01 0.3 0.1 0.1‡ 0.1 – –
S7A 0.06 0.3 0.28 1 0.01 0.3 0.1 0.1‡ 0.1 – –
S7B 0.06 0 0 1 0.01 0.3 0.1 0.1‡ 0.1 – –
S7C 0.06 0.3 0.28 1 0.01 0.3 0.1 0.1‡ 0.1 – –

γA0 βA γA γM KA KM βM∗ βM KC βP∗ KX1

Fig. min−1 min−1 min−1 min−1 nM nM nM min−1 nM nM nM
min−1 min−1

S1A – – – – – – – – 300 90 –
S1B 0.1 1.5 1.5 1.5 1 1 125 – – – –
S1C – – – – – – – – – – –
S1D 0.1 1.5 1.5 1.5 1 1 – 0.4167 – – –
S1E 0.1 1.5 1.5 1.5 1 1 – 0.4167 – – –
S1F – – – – – – – – – – –
S2B – – – – – – – – – – –
S2C – – – – – – – – – – –
S3A – – – – – – – – – – 1
S3B – – – – – – – – – – 1
S3C – – – – – – – – – – 1
S5 0.1 1.5 1.5 1.5 1 1 – 0.4167 – – –
S6A – – – – – – – – – – –
S6B – – – – – – – – – – –
S6C 0.1 1.5 1.5 1.5 1 1 – 0.4167 – – –
S7A 0.1 1.5 1.5 1.5 1 1 – 0.4167 – – –
S7B – – – – – – – – – – –
S7C 0.1 1.5 1.5 1.5 1 1 – 0.4167 – – –

‡ Unless directly perturbed (e.g. βC = [0.1, 0.15, 0.2] min−1).
∗ Except when stated otherwise.
∗∗ Multiple values: αP = [0.5, 0.75, 1, 1.25, 1.5] µθ .
† Multiple values (shown in the figure) were tested.



*

Figure S2: Related to Section “Design of a proportional control term” and STAR Methods “Experimental realization of

proportional control function”. Proportional function realization and non-ideal cases. (A) Proposed experimental
realization of the proportional control function fP (XC , Y ) = βPY

αP Y
αP Y+XC+εC

(Eq. s4). (B) [Left panel] Time dynamics of

output XC(t) following a change in process parameter βC for Y = 300 nM in a model with a PI controller when αP = µ/θ = 3.33
and εC = 500 nM. The example with εC = 0 is shown on the same plot as a dotted line for comparison. [Right panel] Same

plot with εC = 500 nM, but for an increased value of βP from βP = 0.3 min−1 to βP = 0.4 min−1. In general, increasing εC
weakens the proportional feedback, but this effect can be compensated for by increasing the value of the proportional weight
βP . (C) Time dynamics of output XC(t) following a change in process parameter βC for Y = 300 nM in a model with a PI

controller when αP 6= µ/θ and εC = 0 nM. In all cases, the example with αP = µ/θ = 3.33 is shown as a dotted line for
comparison. Last column showing different values of βP illustrates that decreasing αP weakens the proportional feedback and
that this effect can be compensated for by increasing the value of βP . However, for large enough αP (e.g. αP = 5), the integral

controller is compromised (see Figure S1F for Z1 and Z2 dynamics). But, this again can be compensated for by decreasing βP .
This illustrates the iterative design process that should be undertaken in these systems. See Table S2 for parameter values used
in each simulation.
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Figure S3: Related to Section “Design of a proportional control term” and STAR Methods “Adding active degradation to the
X1 equation”. Adding active degradation in proportional control can help extend dynamic range of operation.

Time dynamics of XC and Z1 following positive step changes in βC (starting at 0.1 min−1 with subsequent step changes to

0.1125 min−1, and then 0.225 min−1) for (A) αshift = 0, (B) αshift = 2/3, and (C) αshift = 1 in Eq. (s5). Each color represents
a different value of Y used ([nM]; see legend). See Table S2 for parameter values used in each simulation.
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Figure S4: Related to Section “Design of a derivative control term”, STAR Methods “Realizing the derivative control term” and

STAR Methods “Analysis of poles in Eq.(s7)”. Design choices for the parameter values of derivative motif requires

| − ω2
max + γA0ωmax| ≤ βAγM/N to ensure accurate derivative measurement. Top plot (left) displays time-domain XC

(input to the derivative motif) and −dXC/dt. Here XC = exp (− 1
2

( t−t0
τ

)2) cos (ω0[t− t0]), i.e. a modulated gaussian of width

τ and frequency ω0 = 2π/τ , t0 = 4τ , and amplitude 1. (Continued on next page.)



Figure S4: (Previous page.) Panels A-C: Left plot displays frequency domain representation of XC(jω) and transfer function
H(jω) of the derivative motif, where s = jω. Also plotted are ω =

√
βAγM (fast), ω =

√
βAγM/10 (slow) to show where slow,

medium and fast time scales (low, medium, and high frequencies) reside, compared with ω = ωmax∗ (also plotted). Right plots:

Simulation of Eqs. (13-14). Plotted for comparison are −dXC(t)/dt/max | − dXC(t)/dt| and (A(t) − Ass)/max |A(t)−Ass|,
i.e. a normalized comparison between −dXC(t)/dt and A(t). Here Ass represents steady-state A. We also plot [

d2A(t)

dt2
+

γA0

dA(t)
dt

]/(βAγM max |A(t)−Ass|) to visually see if, on average, | d
2A
dt2

+ γA0
dA
dt
| is much smaller than |βAγMA|. Simulations

used parameter values γA = 31.4 min−1, βA = γM = 1.57 min−1, and βMY = 1.57 nM min−1. And γA0
=
√
βAγM/K. From

the design constraint in Eq.(s11), we set N = 10. where 1/N is the relative error tolerance. We also calculated the phase and

amplitude of βAγM
γA

γA
−ω2+γA0

jω+βAγM
at the modulation frequency ω0. This gives us an approximate phase error ∆φ and

relative amplitude ratio Ramp between A(t) and −dXC(t)/dt. (A) Case 1: K = 1, N = 10. The values for τ , the modulated
gaussian parameter, were τ = 80, 40, 10 and 4 minutes. This corresponds to Ramp = 1.001, 1.005, 1.075, and 1.001. And

∆φ = −2.85π/180,−5.80π/180,−25.4π/180, and −90π/180 radians. (B) Case 2: K = 0.1, N = 10. The values for τ , the

modulated gaussian parameter, were τ = 800, 400, 100 and 40 minutes. This corresponds to Ramp = 0.999, 0.995, 0.931, and
0.709. And ∆φ = −2.92π/180,−5.82π/180,−21.57π/180, and −45.46π/180 radians. C) Case 3: K = 10, N = 10. The values

for τ , the modulated gaussian parameter, were τ = 80, 40, 10 and 4 minutes. Ramp = 1.003, 1.010, 1.189, and 10.004. And

∆φ = −0.29π/180,−0.58π/180,−2.72π/180, and −90.0π/180 radians.
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Figure S5: Related to Section “Design of a derivative control term” and STAR Methods “Bounds on antithetic integral control

with P and D terms” Adaptation time as a function of control weights for the simple process (Eq.(5) in main

text). (A) Diagram exemplifying how the adaptation time is calculated. For a given combination of proportional, derivative
and integral control weights, a simulation is started from the steady-states for βC = 0.1 min−1. The value of βC is then changed

to βC = 0.15 min−1, and the system simulated for 1000 minutes. Following this perturbation to βC , the system is assumed
to have reached steady-state once XC = 〈XC〉 ± ε, where 〈XC〉 corresponds to steady-state of XC after the perturbation and
ε is equal to 5% of the maximum observed “overshoot” or change with respect to 〈XC〉. (B) Plot of adaptation time as a

function of control parameter weights. Each point on the heat map corresponds to a different value of βP and βD, and the

color corresponds to the measured adaptation time according to the color-bar on the bottom. The value is shown in white if
the system loses adaptation (integral controller is broken, see Figure S1), and in black if adaptation took too long (i.e. more

than 1000 minutes). Each panel shows adaptation for a different Y = [300, 1000] nM and βI = [0.03, 0.06] min−1. (C) Examples
of XC(t) dynamics for different values of βP and βD, with Y = 300 nM and βI = 0.06 min−1 (lower left panel in (B), values

of βD and βP used for simulations are also marked on this panel). Examples show include a case where stable oscillations are

observed (top panel), adaptation is efficiently achieved (middle panel), and the system loses integral control (bottom panel; Z1

is too small to control Z2; Figure S1). See Table S2 for parameter values used in these simulations.
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Figure S6: Related to Section “Design of a derivative control term”. Related to Figures 2 and 3. Proportional and
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antithetic integral controller design in Eqs.(6-8) (I control; fP (XC , Y ) = 0 and Dt(XC , Y ) = 0). (B) Time dynamics of output
XC(t) with proportional control (PI control; Dt(XC , Y ) = 0). (C) Time dynamics of output XC(t) with derivative control (ID

control; fP (XC , Y ) = 0). For all cases the dilution rate is γd = 0.01 min−1. See Table S2 for parameter values used in each
simulation.
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Figure S7: Related to Section “Linear perturbation analysis of nonlinear PID control design provides analytical support for the

design”, Section “PID benefits depend on the process to be controlled and PID gains need to be tuned”, and STAR Methods
“The control circuit equations linearized about a set-point”. Linearized biochemical PID control mimics the adaptation
dynamics of the nonlinear controller for small to moderate step-changes in the parameter βC and compares
favorably to traditional PID controller under defined parameter regimes. (A) The time dynamics of XC , Z1 and

Z2 are plotted for the full model (dashed blue, Eqs.(5-8,11-12)), the linearized model (yellow, Eq.(s22)), and the linearized
model plus quadratic correction term, ηz1(t)z2(t) (red). See Table S2 for parameter values used in each simulation. The βC
perturbations are shown in the top panels. For XC dynamics, the traditional PID case (purple) was simulated with just the
process (Eq.(5)) and the X1 equation with exact error terms (Eq.(s28)). (B) Linearized model (yellow) for the integral (I)

only case, captures convergent oscillations (first change in βC) and the onset of limit cycle (second change in βC). Adding the
quadratic term (red) agrees well with the full solution (dashed blue). (C) XC dynamics for the linearized biochemical controller
and traditional linear controller following step changes in βC for Y = 60 nM (upper panel) and Y = 600 nM (lower panel). As

Y increases, the two controllers converge as a result of the convergence of the kI of the biochemical controller to that of the

traditional controller. (D) XC dynamics for the process with delay (no feedback) from Section “PID benefits depend on the
process to be controlled and PID gains need to be tuned” (Figure 5A). In this case, the traditional PI controller output is not

the same as that of the full nonlinear biochemical PI controller and its linearized model. However, changing the proportional
terms from 3kPY to kPY makes all the controllers indistinguishable, illustrating a difference between a traditional proportional
controller and the biochemical one for this particular design.
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Figure S8: Related to Section “PID benefits depend on the process to be controlled and PID gains need to be tuned”, Section

“Constructing a PID controller with a different integral controller architecture”, STAR Methods “Z1 positively regulates XC in
the presence of P and D terms”, and STAR Methods “Steady State analysis of integral controller from Eq. (25)”. Graphical
solutions of steady-state Eq. (8) and steady-state Eq. (25). (A) Uniqueness of solution for Eq. (8) between Z1 and X1

for the general PID case. As Z1 increases, the crossing point of the two curves will increase in X1. Thus, graphically proving

that dX1/dZ1 > 0. (B) Graphical solutions of Eq. (25) for different values of βZ/γZ , KZ and Y . For βZ/γZ < 1, solution
will occur for Z/(Z + KZ) < βZ/γZ . Only for βZ/γZ > 1 may the solution occur where Z/(Z + KZ) ≈ 1, the condition for

approximate integral control. Results presented are for the I only case.


