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Table S1: Related to Figures[2] [3] ] [] and [7] Simulation parameter values used in main figures.

Br Bp Bp M n 4 7 Be YC K¢ Bps
Fig.| min™" [ min™' | min™" | min™ ' [ oM~T | min™' | min~" | min~T | nM nM nM
min~! min~!
0.06 0 0 1 0.01 |[0.3 0.1 0.1 0.1 — —
0.06 0 0 1 0.01 0.3 0.1 0.17 0.1 300 90
0.06 0 0 1 0.01 0.3 0.1 0.1% 0.1 - 90
2 0.06 0.3 0 1 0.01 0.3 0.1 0.1 0.1 - -
3 0.06 0 0.56 1 0.01 0.3 0.1 0.1 0.1 - -
0.06 0 0.56 |1 0.01 |0.3 0.1 0.1 0.1 — -
0.06 0 0.56 |1 0.01 |0.3 0.1 0.1 0.1 —~ —~
0.06 0.15 0.28 1 0.01 0.3 0.1 0.1% 0.1 - -
0.06 0.15 0.28 1 0.01 0.3 0.1 0.1 0.1 - -
t t t 1 0.0l |03 0.1 0.1t |01 - -
0.0576*| 0 0 1 - 0.3 0.1 0.1% 0.1 - -
0.0576*| 0.15 | 0.28 1 - 0.3 0.1 0.1 0.1 - -
VAo Ba YA Y™ Ka Ky B« Bum Bz vz Ky
Fig.| min™" | min™' | min=' | min=' | oM nM nM min~! | min™' | min=' | oM
min~—!
2 _ _ _ _ _ _ _ _ _ _ _
0.1 1.5 1.5 1.5 1 1 — 0.4167 | — - -
0.1 1.5 1.5 1.5 1 1 125 - - - -
0.1 1.5 1.5 1.5 1 1 — 0.4167 | — - -
0.1 1.5 1.5 1.5 1 1 — 0.4167 | — - -
0.1 1.5 1.5 1.5 1 1 — 0.4167 | — — —
0.1 1.5 1.5 1.5 1 1 — 0.4167 | — — —
— - — — — — — — 4 2 1
0.1 1.5 1.5 1.5 1 1 — 0.4167 | 4 2 1

1 Unless directly perturbed (e.g. S¢ = [0.1,0.15,0.2] min~1).

T Multiple values (shown in the figure) were tested.

* Corresponds to 1, parameter in the alternative PID system (see Section ‘{Constructing a PID controller]
[with a different integral controller architecture| ).
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Figure S1: Related to Section ‘[Design of a proportional control term|’, Section ‘[Design of a derivative control term|’, and
STAR Methods {Bounds on antithetic integral control with P and D terms]’. Suboptimal performance occurs when the
proportional or derivative controllers are too strong. Zs levels increase linearly over time when the (A,C) proportional,
(B,D) derivative, or (E) a combination of these are too strong and the production of Zi is too small to compensate for the
production of Z3. This occurs, for example, for low Y set-point values. In all plots the state variables reach a steady-state
except for Za. (A,B) Plots of all state variables for controllers in which the proportional (A) or derivative (B) terms do not
scale with the set-point Y. In these cases, Y = 60nM is too small for the strength of the proportional and derivative functions,
respectively (see Figure and Figure ) (C-E) Plots of all state variables for controllers PI and ID designed in this work, in
which controller scales with set-point Y. When 8p and Sp, or a combination of these, are too high, loss of integral function is
also observed. (F) When ap # 11/6 is too high (see Figure[S2[C), loss of integral control also occurs. See Table[S2]for parameter
values used in each simulation.




Table S2: Related to Sections ‘[Design of a proportional control term|’, ‘{Design of a derivative control term|’, and ‘
[perturbation analysis of nonlinear PID control design provides analytical support for the design|’, and Figures and
Simulation parameter values used in supplementary figures.

Br Bp Bp 0 n ¢ T Bo Yo €c ap
Fig. min~! | min™' | min~" | min™? | oM~ | min™' | min~" | min~T | nM nM
min—! min~—!

STA 0.06 |0 0 1 0.01 |03 0.1 0.1 0.1 - -
SiB 0.06 0 0.56 1 0.01 0.3 0.1 0.1 0.1 - -
SIIC 0.06 1 0 1 0.01 0.3 0.1 0.1 0.1 - -
STD 0.06 |0 1.5 1 0.01 |03 0.1 0.1 0.1 — —
STE 0.06 | 0.5 0.75 1 0.01 |03 0.1 0.1 0.1 — —
SIF 0.06 0.3 0 1 0.01 0.3 0.1 0.2 0.1 - 5
S2B 0.06 | 0.3* 0 1 0.01 |03 0.1 0.1% 0.1 500 -
S2C 006 |03 |0 1 0.01 |03 0.1 0.1+ | 0.1 - [..]**
S3A 0.06 | 0.3 0 1 0.01 |03 0.1 0.1% 0.1 —~ —
S3B 0.06 | 055 |0 1 0.01 |03 0.1 0.1% 0.1 - —~
S3IC 0.06 0.7 0 1 0.01 0.3 0.1 0.1% 0.1 - -
S5 i T i 1 0.01 | 0.3 0.1 0.1% 0.1 - -
SEIA 0.06 |0 0 1 0.01 |03 0.1 0.1% 0.1 — —
S6B 0.06 | 0.3 0 1 0.01 |03 0.1 0.1% 0.1 — -
S6IC 0.06 |0 0.56 |1 0.01 |03 0.1 0.1% 0.1 —~ -
STIA 0.06 0.3 0.28 1 0.01 0.3 0.1 0.1% 0.1 - -
S7B 0.06 0 0 1 0.01 0.3 0.1 0.1% 0.1 - -
S7C 0.06 | 0.3 028 |1 0.01 |03 0.1 0.1% 0.1 —

B« Bum Ko Bps Kx,

VAo Ba YA ™ Ka Ky
Fig min~! | min~! | min~? | min~T | nM nM nM min~! [ nM nM nM
min~! min~!
STA | - - = - - - - — 300 90 =
S1B 0.1 1.5 1.5 1.5 1 1 125 - - - -
Sic | - - - - - - - - - - -
SID | 0.1 15 15 1.5 1 1 — 0.4167 | — — —
STE 0.1 1.5 1.5 1.5 1 1 — 0.4167 | — — —
STF - - - - - - - - - - -
S2B - - - - - - - - - - -
S2Cc | - - - - - - - - - - -
S3A | - — - - - - - - - - 1
S3B - - - - - - - - - - 1
S3C — — - - - - — — — — 1
S5 0.1 1.5 1.5 1.5 1 1 - 0.4167 | — — —
SelA | - - - - - - - - - - -
SeB | - - - - - - - - - - -
S6C 0.1 15 15 1.5 1 1 — 0.4167 | — — —
S7TA | 0.1 1.5 1.5 1.5 1 1 - 0.4167 | — - -
S7B - - - - - - - - -
S7C 0.1 1.5 1.5 1.5 1 1 - 0.4167 | — - -

i Unless directly perturbed (e.g. S¢ = [0.1,0.15,0.2] min~1).
* Except when stated otherwise.

** Multiple values: ap = [0.5,0.75,1,1.25,1.5] .

T Multiple values (shown in the figure) were tested.



Parameter perturbations

€. =500 nM, B, = 0.3 min® g, =500 nM, B, = 0.4 min*

@ @ NUCLEUS ' CYTOPLASM

TF binding site Tk 9

n
&
Pl-control

—

TF binding site

2000 4000 0 2000 4000
Minutes Minutes

Parameter perturbations

— | —

a, = 2.5, B, = 0.3 min* a, = 1.67, B, = 0.4 min*

1200

1100

1000

X [nM]

900

800

700

apY
opY+Xc

a, = 4.17, B, = 0.3 min™ a, = 5, B, = 0.3 min™? a, = 5, B, = 0.25 min*

Pl-control

fo=BpY

1200

1100

1000

X [M]

900

800

0 2000 4000 0 2000 4000 0 2000 4000
Minutes Minutes Minutes

Figure S2: Related to Section ‘Design of a proportional control term|’ and STAR Methods ‘{{Experimental realization of]
[proportional control function]. Proportional function realization and non-ideal cases. (A) Proposed experimental
realization of the proportional control function fp(Xc,Y) = BpYﬁ (Eq. . (B) [Left panel] Time dynamics of
output X (t) following a change in process parameter 8¢ for Y = 300 nM in a model with a PI controller when ap = /0 = 3.33
and ec = 500nM. The example with ec = 0 is shown on the same plot as a dotted line for comparison. [Right panel] Same
plot with e = 500nM, but for an increased value of Sp from Sp = 0.3min~! to Sp = 0.4min~!. In general, increasing ec
weakens the proportional feedback, but this effect can be compensated for by increasing the value of the proportional weight
Bp. (C) Time dynamics of output Xc(t) following a change in process parameter S¢ for Y = 300nM in a model with a PI
controller when ap # u/6 and e¢¢ = O0nM. In all cases, the example with ap = /0 = 3.33 is shown as a dotted line for
comparison. Last column showing different values of Bp illustrates that decreasing ap weakens the proportional feedback and
that this effect can be compensated for by increasing the value of 8p. However, for large enough ap (e.g. ap = 5), the integral
controller is compromised (see Figure for Z1 and Z3 dynamics). But, this again can be compensated for by decreasing Bp.
This illustrates the iterative design process that should be undertaken in these systems. See Table[S2for parameter values used

in each simulation.
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Figure S3: Related to Section ‘{Design of a proportional control term’ and STAR Methods ‘{Adding active degradation to the|
[Xiequation]. Adding active degradation in proportional control can help extend dynamic range of operation.
Time dynamics of X and Z; following positive step changes in B¢ (starting at 0.1 min~! with subsequent step changes to
0.1125min~!, and then 0.225 min~1) for (A) agpist = 0, (B) ashirs = 2/3, and (C) agpigs = 1 in Eq. (s5). Each color represents
a different value of Y used ([nM]; see legend). See Table for parameter values used in each simulation.
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Figure S4: Related to Section ‘{Design of a derivative control term|’, STAR Methods ‘|Realizing the derivative control term|” and
STAR Methods JAnalysis of poles in Eq.(s7)]'. Design choices for the parameter values of derivative motif requires
| —w2, 00 + YAoWmaz| < Bava/N to ensure accurate derivative measurement. Top plot (left) displays time-domain X¢
(input to the derivative motif) and —dX ¢ /dt. Here X = exp (—%(%)2) cos (wo[t — to]), i.e. a modulated gaussian of width
7 and frequency wo = 27/, to = 47, and amplitude 1. (Continued on next page.)




Figure S4: (Previous page.) Panels A-C: Left plot displays frequency domain representation of X (jw) and transfer function

H(jw) of the derivative motif, where s = jw. Also plotted are w = /Bavn (fast), w = +/Bavyar/10 (slow) to show where slow,

medium and fast time scales (low, medium, and high frequencies) reside, compared with w = wp g+ (also plotted). Right plots:

Simulation of Egs. (13-14). Plotted for comparison are —dX¢(t)/dt/ max| — dXc(t)/dt| and (A(t) — Ass)/ max |A(t) — Ass|,
2

i.e. a normalized comparison between —dXc(t)/dt and A(t). Here A, represents steady-state A. We also plot [d A®) 4

dt?
VAo %}Et)]/(ﬁA'yM max |A(t) — Ass|) to visually see if, on average, \‘327‘24 +74, %| is much smaller than |84y A|. Simulations

used parameter values v4 = 31.4min~ !, B4 = vy = 1.57min"!, and B;;Y = 1.57nM min—!. And YA, = VBavnm /K. From
the design constraint in Eq.(s11)), we set N = 10. where 1/N is the relative error tolerance. We also calculated the phase and

li £ Bavm YA
amplitude of =2 —w?tvagjwtBaTm

relative amplitude ratio Rqamp between A(t) and —dXc(t)/dt. (A) Case 1: K =1, N = 10. The values for 7, the modulated
gaussian parameter, were 7 = 80,40,10 and 4 minutes. This corresponds to Rqamp = 1.001,1.005,1.075, and 1.001. And
A¢ = —2.857/180, —5.807/180, —25.47 /180, and —907 /180 radians. (B) Case 2: K = 0.1, N = 10. The values for 7, the
modulated gaussian parameter, were 7 = 800,400, 100 and 40 minutes. This corresponds to Rgmp = 0.999,0.995,0.931, and
0.709. And A¢ = —2.927/180, —5.827/180, —21.577 /180, and —45.467 /180 radians. C) Case 3: K = 10, N = 10. The values
for 7, the modulated gaussian parameter, were 7 = 80,40, 10 and 4 minutes. Ramp = 1.003,1.010,1.189, and 10.004. And
A¢ = —0.297/180, —0.587 /180, —2.727 /180, and —90.07/180 radians.

at the modulation frequency wg. This gives us an approximate phase error A¢ and
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Figure S5: Related to Section ‘[Design of a derivative control term|" and STAR Methods ‘[Bounds on antithetic integral control|
[with P and D terms Adaptation time as a function of control weights for the simple process (Eq@ in main
text). (A) Diagram exemplifying how the adaptation time is calculated. For a given combination of proportional, derivative
and integral control weights, a simulation is started from the steady-states for 8¢ = 0.1 min—!. The value of B¢ is then changed
to fc = 0.15min~!, and the system simulated for 1000 minutes. Following this perturbation to B¢, the system is assumed
to have reached steady-state once X¢ = (X¢) £ €, where (X¢) corresponds to steady-state of X after the perturbation and
€ is equal to 5% of the maximum observed “overshoot” or change with respect to (X¢). (B) Plot of adaptation time as a
function of control parameter weights. Each point on the heat map corresponds to a different value of Sp and Bp, and the
color corresponds to the measured adaptation time according to the color-bar on the bottom. The value is shown in white if
the system loses adaptation (integral controller is broken, see Figure , and in black if adaptation took too long (i.e. more
than 1000 minutes). Each panel shows adaptation for a different Y = [300, 1000] nM and 8; = [0.03,0.06] min—!. (C) Examples
of X¢(t) dynamics for different values of Bp and Bp, with Y = 300nM and 8 = 0.06 min—! (lower left panel in (B), values
of Bp and Bp used for simulations are also marked on this panel). Examples show include a case where stable oscillations are
observed (top panel), adaptation is efficiently achieved (middle panel), and the system loses integral control (bottom panel; Z1
is too small to control Zs; Figure[S1). See Table for parameter values used in these simulations.
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Figure S6: Related to Section ‘[Design of a derivative control term|’. Related to Figures [2] and Proportional and
derivative control terms improve steady-state adaptation error in the presence of dilution. (A) Time dynamics of
output X (t) following a change in the set-point Y (left panel) or in process parameter B¢ (right panel). The outcome of B¢
perturbation is also shown for different values of Y = [60, 180, 300, 540] nM. Simulations are shown for process in Eq. and
antithetic integral controller design in Eqs.(B}[8) (I control; fp(Xc,Y) =0 and D¢(X¢,Y) = 0). (B) Time dynamics of output
X (t) with proportional control (PI control; D¢(Xc,Y) = 0). (C) Time dynamics of output X¢(¢) with derivative control (ID
control; fp(Xc,Y) = 0). For all cases the dilution rate is 74 = 0.0l min~!. See Table for parameter values used in each
simulation.
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Figure ST7: Related to Section ‘|Linear perturbation analysis of nonlinear PID control design provides analytical support for the|

, Section 4PID benefits , and STAR Methods
ﬂmmm’ Linearized blochemlcal PID control mimics the adaptation
dynamics of the nonlinear controller for small to moderate step-changes in the parameter 8- and compares
favorably to traditional PID controller under defined parameter regimes. (A) The time dynamics of X¢, Z1 and
Zy are plotted for the full model (dashed blue, Eqs.(5H8[11}12))), the linearized model (yellow, Eq.), and the linearized
model plus quadratic correction term, nz1(t)z2(t) (red). See Table[S2| for parameter values used in each simulation. The 8¢
perturbations are shown in the top panels. For X dynamics, the traditional PID case (purple) was simulated with just the
process (Eq.(B)) and the X1 equation with exact error terms (Eq.(s28)). (B) Linearized model (yellow) for the integral (I)
only case, captures convergent oscillations (first change in S¢) and the onset of limit cycle (second change in S¢). Adding the
quadratic term (red) agrees well with the full solution (dashed blue). (C) X¢ dynamics for the linearized biochemical controller
and traditional linear controller following step changes in S¢ for Y = 60nM (upper panel) and Y = 600nM (lower panel). As
Y increases, the two controllers converge as a result of the convergence of the k; of the biochemical controller to that of the
traditional controller. (D) X¢ dynamics for the process with delay (no feedback) from Section ‘[PID benefits depend on the|
[process to be controlled and PID gains need to be tuned|” (Figure ) In this case, the traditional PI controller output is not
the same as that of the full nonlinear biochemical PI controller and its linearized model. However, changing the proportional
terms from 3kpY to kpY makes all the controllers indistinguishable, illustrating a difference between a traditional proportional
controller and the biochemical one for this particular design.
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Figure S8: Related to Section ‘[PID benefits depend on the process to be controlled and PID gains need to be tuned]’, Section
‘Constructing a PTD controller with & different tegral controller architecturd , STAR Methods {7 posiively reglates X Tn
[the presence of P and D terms]’, and STAR Methods ‘[Steady State analysis of integral controller from Eq. (25)]'. Graphical
solutions of steady-state Eq. and steady-state Eq. . (A) Uniqueness of solution for Eq. between Z7 and X
for the general PID case. As Z; increases, the crossing point of the two curves will increase in X;. Thus, graphically proving
that dX1/dZy > 0. (B) Graphical solutions of Eq. for different values of Bz /vz, Kz and Y. For 8z/vz < 1, solution
will occur for Z/(Z + Kz) < Bz/vz. Only for 8z/vz > 1 may the solution occur where Z/(Z + Kz) = 1, the condition for
approximate integral control. Results presented are for the I only case.




