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SUMMARY

The capability to engineer de novo feedback control
with biological molecules is ushering in an era of
robust functionality for many applications in biotech-
nology and medicine. To fulfill their potential, these
control strategies need to be generalizable, modular,
and operationally predictable. Proportional-integral-
derivative (PID) control fulfills this role for technolog-
ical systems. Integral feedback control allows a sys-
tem to return to an invariant steady-state value after
step disturbances. Proportional and derivative feed-
back control used with integral control modulate the
dynamics of the return to steady state following
perturbation. Recently, a biomolecular implementa-
tion of integral control was proposed based on an
antithetic motif in which two molecules interact stoi-
chiometrically to annihilate each other’s function. In
this work, we report how proportional and derivative
implementations can be layered on top of this inte-
gral architecture to achieve a biochemical PID con-
trol design. We investigate computationally and
analytically their properties and ability to improve
performance.

INTRODUCTION

In both biology and engineering, integral feedback control can

ensure perfect adaptation, that is, the ability to return to a desired

set point after a perturbation. Because of its widespread success-

ful use in engineering, and its natural occurrence in biology,

modular and robust implementations of integral control have

been actively pursued in synthetic biology. A breakthrough design

of an integral control scheme based on a simple ‘‘antithetic motif’’

was recently reported (Briat et al., 2016). In this design, twomolec-

ular species bind to each other and annihilate each other’s func-

tion through this binding (Figure 1A). If one of the ‘‘antithetic’’ mo-

lecular species controls the input of a processFwhile the other is

dependent on the output of F, then it can be mathematically

demonstrated that the steady-state value of the output of F

perfectly adapts regardless of any step perturbation thatF is sub-

jected to. The antithetic motif used in this configuration, therefore,

implements integral feedback action necessary to achieve perfect

adaptation. An initial experimental proof of concept based on the

antithetic feedbackmotif was recently tested in E. coli using s and

anti-s factors to implement the antithetic reaction, and the results

suggest that this feedback method is indeed able to implement

integral control in vivo (Aoki et al., 2019).

Integral control has limitations; it can be prone to problems

such as long delays and oscillations before returning to the

steady state (due to poor damping) or inability to return to the

steady state (due to limit cycles), and this has been shown to

occur for the antithetic motif as well (Briat et al., 2016). To

overcome these limitations, traditionally, integral control is

used in combination with other control strategies, such as

proportional and derivative control (Figure 1B). Proportional

(P) control uses the instantaneous regulation error between

the desired set point and the output of the process F to be

controlled and by doing so, it can increase the speed of

response. Derivative (D) control uses the time derivative of

the regulation error signal. It can reduce overshoot and

increase the convergence rate to steady state. Finally, integral

(I) control uses the integral of the error signal. Signals from P,

I, and D are summed to generate the control signal u(t)—that

is, the signal that is generated by the combined PID controller

and is then inputted to the process F in order to control it

(Figure 1B) (Bennett, 1993). For many applications in engineer-

ing, this combination has been shown to provide more robust

performance than any control term alone.

Our aim is to improve upon the antithetic integral control

motif in much the same way PID control improves on integral

control. Although other strategies exist to implement

adaptation in the biological context (Alon et al., 1998; Yi et al.,

2000; El-Samad et al., 2002; Muzzey et al., 2009), including

incoherent feedforward loops, which are prevalent in nature

(Mangan et al., 2006), we have chosen to focus on proportional

and derivative control in this work. We ask how P and D control

can be designed to enable implementation of PI, ID, or PID

biomolecular control schemes in cells. As discussed in Box 1,

we have chosen to take a theoretical approach to this

problem because we believe that theory plays a useful role in

guiding future experiments that may be presently impractical.

However, we caution that because the biological context is

idiosyncratic, we cannot be certain that P, I, and D control will

be as easy to implement and tune in biology or combine in
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practice as they have been in more traditional engineering

contexts.

In this paper, we present the design of a biomolecular PID con-

trol system, based on the antithetic integral (I) control motif (Fig-

ure 1C). Our design of proportional (P) control proceeds through

the development of a nonlinear function that implicitly contains a

scaled subtraction of the set point and process output (that is,

the regulation error). For the derivative (D) control design, we

draw inspiration from the E. coli chemotaxis regulatory network

(Barkai and Leibler, 1997), which is capable of measuring the

time-dependent changes in chemoattractant concentrations,

naturally implementing an approximate derivative motif. We

demonstrate, through analytical treatments and numerical simu-

lations, how the addition of proportional and derivative control to

integral control improves transient adaptation dynamics. We

further show how our designs relate to a traditional engineering

PID controller and illustrate how such analogy facilitates the

choice of parameters for the P, I, and D control functions as

well as their effective weights (kI , kP , kD ). Finally, we discuss

how the modularity of the proposed PID control allows substitu-

tion of different integral controllers, demonstrating that the P and

D control terms are compatible with different forms of integral

control. Our theoretical work paves the way for experimental

studies aimed at modular, general, and robust implementation

of PID control with biological parts.

RESULTS

In a landmark paper by Briat et al. (2016), a simple integral

scheme was proposed to control a general biological process

F. If the output of the process is XC and its input (that is actuated

by the control signal) is X1 (Figure 1A), then this scheme in the

deterministic regime is given by:

dZ1

dt
= mY � hZ1Z2 (Equation 1)

dZ2

dt
= qXC � hZ1Z2 (Equation 2)

dX1

dt
= bIZ1 � g1X1 (Equation 3)

Equations 1 and 2 were produced by an antithetic motif in

which two molecules Z1 and Z2 bind and annihilate each other’s

activity with mass-action kinetics. Z1 is produced at some rate

mY and influences the production of the process-actuated

molecule X1 in Equation 3. Z2 is produced at a rate qXC, propor-

tional to the output of the process F, hence closing the loop

(Figure 1A, anthithetic module in blue). The equation describing

Z = Z1 � Z2 is given by:

dZ

dt
=
dZ1

dt
� dZ2

dt

=mY � qXC

(Equation 4)

Figure 1. Schematics of an Engineering and Biomolecular Propor-
tional-Integral-Derivative Controller

(A) Schematic of biomolecular integral (I) control using the antithetic motif (blue

box) circuit from Briat et al. (2016). The integral control term (bIZ1) actuates X1,

which is the first molecular species of the controlled process F(t).

(B) Traditional textbook schematic of PID control: time-dependent regulation

error, eðtÞ= rðtÞ� wðtÞ=myðtÞ� qxCðtÞ, is continuously computed and pro-

cessed by the proportional, integral, and derivative control terms. The control

terms are summed up to generate u(t), the control action that is then fed into

the process F(t). The objective is to eliminate the regulation error signal e(t),

driving it to zero after a disturbance to the process.

(C) Schematic of biomolecular PID control. This design builds on the antithetic

motif (blue box). We add proportional (purple box) and derivative (green box)

modules. Like in the traditional PID design, the integral control term (bIZ1), the

proportional control term (fP (XC,Y)) and derivative control term (Dt (XC,Y)) are

additive in the actuation of X1, which is the first molecular species of the

controlled process F(t).
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At steady state, dZ
dt = 05mY = qXC. Therefore, the steady-

state output is given by XCss
= mY=q, which is obviously indepen-

dent of the process F and hence is achieved irrespective of F

and despite any perturbation to its parameters. This is referred

to as set-point tracking, since the output at steady state tracks

the input Y. Equation 4 also implies that if the system is at steady

state and a step change in the parameter values of F occurs,

then XC will return to its pre-perturbed value after an initial tran-

sient. This is the essence of the integral control action. One notes

here that Z is only a mathematical regulation error quantity and

not a physical quantity, as the production of X1 involves Z1 and

not Z1 � Z2. Furthermore, the integral effect is contingent on

two general requirements. First, the output XC must be control-

lable in a positive manner by the actuated variable X1 through

the process F in order to preserve the corrective nature of the

feedback through the antithetic motif. For example, saturation

should not occur in the observed range of X1, otherwise XC

cannot be effectively controlled. Second, the disappearance of

Z1 and Z2 (either through degradation or inactivation) should

only be achieved through their mutual annihilation, but not

through any other process that affects one but not the other

(such as individual degradation of Z1 and Z2).

While integral control achieves step disturbance rejection, it is

seldom used alone in engineering applications. This is because

Box 1. Control Theory in Biology—a Philosophical Discussion

A foundational question of cell engineering, as it matures, is whether it should proceed like it has in the past—by adopting mimicry

of designs commonly found in technological circuits—or whether it should invent new designs that are best tailored to the biolog-

ical substrate. We are of the philosophy that the most practical way to explore the latter option is through developing theory that is

agnostic when it comes to precise biochemical or biological implementation.

There are several reasons we hold this philosophy. Here, we discuss one and its implications. One might argue that while our

knowledge of biological macromolecules may approach the comprehensive, we still have very little understanding of what the

unit of selectable biological function is in any particular biological context. The consequences of this lack of knowledge are

far from trivial. The majority of synthetic biology to date has proceeded by seeking to design a function, examining its implemen-

tation in engineering of technological systems, and then identifying biological ‘‘parts’’ that if composed in prescribed ways, can

approximate the technological implementation. If such biological ‘‘parts’’ do not have a clear definition, being instead (for example)

probabilistic associations of redundant groups of molecules that require a particular context or history for function, then it might be

the case that we are yet to understand the design space of biology even for the simplest functions. However, by using theory, we

can begin to understandmathematically how these ’’parts’’ must work together, even if they remain undefined. It is exciting to ima-

gine that the upgrade to integral, proportional or derivative control, for example, might take forms that we are yet to invent, or

maybe that the notion itself of these types of control will be in need of a more adequate biological replacement.

This raises the question of whether theory should outpace its practice. This is a question that other fields of engineering have

encountered before. For example, before digital computers, even integral control was an elaborate undertaking with non-trivial

constraints on realization. However, theory established that integral feedback, when used on a linear dynamical system, can

robustly steer a regulated system variable to a desired set point, while achieving perfect adaptation to disturbances, regardless

of the model parameters (Francis and Wonham, 1976). Importantly, this seminal theoretical paper did not prescribe any particular

implementation with mechanical or electronic components. Similarly, in biology, zero-order ultrasensitivity—a sharp, thresholded

output response of a signaling network that occurs when signaling proteins are operating near saturation—was a theoretical

construct at first. The theory of cooperativity to explain thresholded dose responses was largely driven by the attempt to explain

the experimental sigmoidal oxygen-binding curve of hemoglobin. However, the theoretical postulation of zero-order ultrasensitivity

as another implementation that can facilitate sigmoidal functions was not in response to any experimental data, nor to solve a bio-

logical mystery (Goldbeter and Koshland, 1981). The theory came first. Experimental discovery and different components and im-

plementations followed. Therefore, we take inspiration from these examples where theory and practice have formed a powerful

synergy, and argue that while implementation details should be a cornerstone of synthetic biology, the theory of what is possible,

even if not immediately implementable, should be another.

This is especially true as different biological contexts may require the same general function to be performed to different levels of

accuracy, precision, speed, robustness, etc. For example, the engineering of patient-derived T cells to treat cancers (Lim and

June, 2017) has a completely different set of design constraints than a conceptually similar strategy for engineering a microor-

ganism to produce value chemicals in batch culture (Chae et al., 2017; Dahl et al., 2013).We are of the philosophy that the design of

a biological controller, like the design of any other system, should start with a list of the design goals and design constraints. The

design goals could be considerations such as zero steady-state error (or full adaptation) after disturbance, fast response, little

overshoot following inputs, or tracking an input with fidelity. Design constraints could be limitations that relate to the system to

be controlled (e.g., its controllability and observability), the failure modes of the controller itself (e.g., integrator windup or ampli-

fication of noise) or related to implementing the controller itself such as its cost and feasibility or availability and precision of com-

ponents. Controller design is almost always an acceptable compromise between these two lists. The complexity of design is also

invariably linked to both goals and constraints. Simply stated, ideally, the number of design parameters in a controller should

match the number of goals in the design, but these parameters are also influenced by the constraints—an engineering tug of

war experienced by every engineer. In essence, our theoretical treatment of PID control in the paper aims to inform the choice be-

tween P, PI, PD and PID controllers at this level.
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Figure 2. Proportional-Integral Control Can Produce Better Transient Dynamics than Integral Control Alone

(A) Time dynamics of output XC(t) following a change in the set-point Y (left panel) or in process parameter bC (right panel). The outcome of bC perturbation is also

shown for different values of Y = ½60; 180; 300; 540� nM. Simulations are shown for process in Equation 5 and controller in Equations 6, 7, and 8 of main text. For I

control, fP (XC,Y) = 0 and Dt (XC,Y) = 0 in these equations.

(legend continued on next page)

4 Cell Systems 9, 1–16, October 23, 2019

Please cite this article in press as: Chevalier et al., Design and Analysis of a Proportional-Integral-Derivative Controller with Biological Molecules, Cell
Systems (2019), https://doi.org/10.1016/j.cels.2019.08.010



integral control responds relatively slowly to disturbance, allow-

ing for a large transient deviation from the desired steady state.

This can lead to system instability and oscillations. To illustrate

this point, we explore the same simple controlled process F

described in Briat et al. (2016) in which X1 is related to XC through

a gain bC:

dXC

dt
= bCX1 � gCXC; (Equation 5)

In this system, while perfect disturbance rejection is achieved

for some parameter regimes, oscillations also easily emerged

with Equations 1, 2, and 3 (which we refer to as I control) for the

controlled process in Equation 5. This is shown in the left panel

of Figure 2A that demonstrates how perfect tracking of the set

point with I control is only achieved after a long period of damped

oscillations. The right panel of Figure 2A shows the I control sys-

tem undergoing sustained oscillations following a perturbation in

bC, a parameter of the controlled process. Because of this

behavior, a commonly usedmodality in engineering combines in-

tegral control with proportional and derivative control, generating

proportional-integral-derivative (PID) control. We therefore, aim

to propose and analyze biochemical implementations of propor-

tional and derivative control that augment and refine the integral

control capabilities of the antithetic motif (Briat et al., 2016). To

achieve this, we propose the following set of equations:

dZ1

dt
= mY � hZ1Z2 (Equation 6)

dZ2

dt
= qXC � hZ1Z2 (Equation 7)

dX1

dt
= bIZ1 + fPðXC;YÞ+DtðXC;YÞ � g1X1 (Equation 8)

The design upgrades actuation of X1 with two additional

terms, fP (XC,Y) for proportional control and Dt (XC,Y) for deriva-

tive control (Figure 1C). In the designs we present below, fP
(XC,Y) will be a function while Dt (XC,Y) will be the output of a

dynamical system with inputs XC and Y. In the same way that

the proportional, integral, and derivative control terms are

summed up in the engineering PID diagram (Figure 1B), they

are summed up in the equation for X1. We propose an experi-

mental implementation of this equation in STAR Methods

‘‘Experimental realization of X1 equation.’’ We next present

designs and analyses that define these terms and their imple-

mentation with biomolecules.

Design of a Proportional Control Term
A traditional implementation of proportional control in the engi-

neering sense would require an explicit computation of the

tracking error, given by eðtÞ=mY � qXCðtÞ in the context of Fig-

ure 1C. Since the outcome of any operation implemented with

biological molecules is another molecule, computation of an er-

ror signal with biomolecules of this type can only generate a pos-

itive quantity. Following the example of the I control scheme, we

will therefore design a proportional control function that acts

implicitly on this error, without explicitly computing it.

The first consideration in the design is that for negative

feedback (XC is a negative regulator in the tracking error), the

proportional control term fP (XC,Y) must be an inhibitory function

of XC. One option is to use a traditional Michaelis-Menten inhib-

itory function, fPðXC; YÞ = bP
mKC

mKC + qXC
, which captures transcrip-

tional repression of X1 by XC. Here, bP represents

the maximum synthesis rate in the absence of the inhibitor XC,

and mKC is a constant related to the affinity or strength of the

inhibitor (smaller KC results in stronger inhibition for the same

concentration of XC). We include m and q in the representation

of this function in order to keep the consistency of notation as

it relates to the antithetic feedback description (Figures 1A

and 1C). This type of transcriptional inhibition function has

been explored in natural occurrences of cellular feedback,

and previously used in synthetic biology applications (Purcell

et al., 2010; Dahl et al., 2013), including adding proportional

regulation to integral control (Briat et al., 2018). However, this

function does not explicitly depend on Y unlike the tracking error

e(t). This disengagement between the set point and proportional

term limits the dynamic range in a PI control system

(DtðXC;YÞ= 0 in Equations 6, 7, and 8). Specifically, at low refer-

ence set-point Y values (including Y = 0), both perfect tracking

behavior and perfect adaptation following a change in bC are

lost (Figure 2B). This is because in this regime, the proportional

term introduces basal synthesis of X1, creating a basal level of

XC and hence of Z2. At the same time, mY is too low so that

insufficient Z1 is produced to successfully overcome the basal

Z2 level. In fact, Z2 grows at a positive constant rate since Z1 is

too low to contribute to its annihilation (see Figure S1A). The

outcome is that the system is effectively operating in open

loop, and the integral control is not satisfactorily active as evi-

denced by the loss of perfect tracking at low Y in Figure 2B.

On the other hand, at high Y values, excess XC is produced

and the function bP
mKC

mKC + qXC
has a small effective value. In this

regime, proportional feedback is lost, and the system acts

like an I control scheme (Figure 2B, right panel). As a result,

while this function is effective in a range of operation centered

around mKC, this dynamic range is limited.

A simple upgrade to include dependence both on Y and XC

uses the function fPðXC; YÞ = bP
mY

mY + qXC
. This function has the

advantage that it scales with the reference set-point Y, allowing

for a larger dynamic range before saturation. The result is

better tracking at low Y and improved damping following

perturbations in the parameters of the controlled process

such as bC (Figure 2C). This implementation, however, still

(B–D) Time dynamics of output XC(t) for different proportional control fP functions (PI control,Dt (XC,Y) = 0). (B) Michaelis-Menten function dependent negatively on

XC. (C) Michaelis-Menten function dependent negatively on XC and postively on the set-point Y. (D) Michaelis-Menten function dependent negatively on XC and

postively on the set-point Ywithmaximum synthesis rate dependent on Y. For the fP functions tested, their parameters were chosen so that all fP functions had the

same value for a chosen set-point value of Y = 300 nM and the same effective proportional weight kP (see Section ‘‘Linear perturbation analysis of nonlinear PID

control design provides analytical support for the design’’ for derivation of kP) at Y = 300 nM ensuring identical adaptation dynamics. See Table S1 for parameter

values used in each simulation.

Cell Systems 9, 1–16, October 23, 2019 5

Please cite this article in press as: Chevalier et al., Design and Analysis of a Proportional-Integral-Derivative Controller with Biological Molecules, Cell
Systems (2019), https://doi.org/10.1016/j.cels.2019.08.010



incurs a steady-state error from the desired XCss
=mY=q at low Y

because of the basal production of XC and Z2 in this regime,

similar to the prior proportional function. Here, again, the I

control is not active until Y is high enough to engage it. At high

valuesofY, stableoscillations still emergedue to lossofPcontrol.

We propose the following proportional control strategy that

accommodates both low and high Y regimes:

fPðXC;YÞ = bPY
mY

mY + qXC

(Equation 9)

At low Y values, fPðXC;YÞ is proportionally low, reducing the

basal synthesis of XC and Z2 accordingly and ensuring that I

control is still active. This restores tracking at low Y values

(Figure 2D, left panel). At high Y values, fPðXC;YÞ also scales

accordingly, maintaining the relative contribution of the propor-

tional term to the control system and resulting in improved

damping (Figure 2D, right panel).

The function fPðXC;YÞ from Equation 9 can be rearranged

to give

fPðXC;YÞ = bP

2m

�
mY +

mY

mY + qXC

½mY � qXC�
�

(Equation 10)

This rearrangement reveals a dependence on the error eðtÞ =
mY � qXCðtÞ, which ismultiplied by the ratio mY

mY + qXC
and shifted by

Y in order to maintain a positive quantity. The improved perfor-

mance of this functional form of proportional control hinges on

this dependence. This is further vetted by analytical arguments

presented below in Section ‘‘Linear perturbation analysis of

nonlinear PID control design provides analytical support for

the design.’’ A possible experimental realization of this function

relies on competitive binding to a regulated promoter between

XC and a transcription factor whose activity is proportional to

Y. This design is discussed in STAR Methods ‘‘Experimental

realization of proportional control function’’ and Figure S2A.

Finally, we note that although we presented our argument

using a function of the form fPðXC;YÞ= bPY
mY

mY + qXC
that is posi-

tioned at bPY/2 when the system is at steady state, our analyses

still hold for other less tuned functions. For example, Equation 9

is derived from a more general biochemical function fPðXC;YÞ=
bPY

aPY
aPY +XC + εC

(STAR Methods ‘‘Experimental realization of

proportional control function’’). When aP =m=q and eC = 0, the

two functions are the same. If eC>0, fP (XC,Y) is a weaker

proportional feedback function, but this can be compensated

by increasing the value of bP accordingly (Figure S2B). Likewise,

if aP[m=q, fP (XC,Y) is close to bPY at steady state, and the

system saturates for negative swings in XC. For aP � m=q, fP
(XC,Y) is a small quantity with very little sensitivity. Here again,

these deviations can be compensated for by adjusting the

proportional control weight bP (Figure S2C). However, this

benefit of increasing bP is not unlimited. For a given bI, increasing

bP excessively beyond a certain value may drive Z1 to be too low

to be able to control Z2, therefore undermining the controller (see

Figures S1C and S1F and STAR Methods ‘‘Bounds on antithetic

integral control with P and D terms’’ for analysis of this case

pertaining to the antithetic integral controller). Further design

options can be deployed to alleviate this effect. For example,

adding an active degradation term to theX1 equation, Equation 8,

can extend the range of bP (and the range of process parameter

values) for which the integral controller remains operational (see

STAR Methods ‘‘Adding active degradation to the X1 equation,’’

and Figure S3). In either case, as with any control design and

given a process and its parameters, the control weights bI and

bP need to be iteratively determined to avoid regimes where

the integral controller is inoperable.

Design of a Derivative Control Term
To design a derivative control term, we drew inspiration from

bacterial chemotaxis in which a bacterium’s sensing and adap-

tation circuit is capable of measuring time derivatives of chemo-

attractant concentrations as the bacterium swims up or down a

gradient (Barkai and Leibler, 1997). To generate a simple imple-

mentation, we adopted a simplified 2-node circuit of the process

from Ma et al. (Ma et al., 2009). Adapting this circuit to our pur-

poses, we propose the following interactions in a dynamical

system that can perform an approximate time derivative mea-

surement of XC, through the following equations:

dA

dt
= bAM� gAXC

A

KA +A
� gA0

A (Equation 11)

dM

dt
= bMY � gMA

M

KM +M
(Equation 12)

The derivative control term proposed for Equation 8 is then

given by DtðXC;YÞ = bDA, where A is the output of the derivative

motif in Equations 11 and 12. This circuit consists of two mole-

cules, A and M, where A is produced at a rate proportional to

M and actively degraded by XC. M is produced at a rate propor-

tional to the reference signal Y (the signal to be tracked by the

controlled process) and actively degraded by A. One require-

ment for the derivative computation through this circuit is that

the active degradation terms (Michaelis-Menten functions) oper-

ate at or near saturation with KA � A and KM � M, over the

range of set-point values desired of the process. This results in

the following approximate equations:

dA

dt
zbAM� gAXC � gA0

A (Equation 13)

dM

dt
zbMY � gMA (Equation 14)

To see how the time-derivative measurement of XC is

achieved, we start by taking the time-derivative of Equation 13,

solving for dM
dt and substituting the resulting expression into

Equation 14, which yields

d2A

dt2
+ gA0

dA

dt
+ bAgMAz� gA

dXC

dt
+ bAbMY (Equation 15)

Since A and M are design variables, their parameters can be

chosen so that there is a desired timescale separation between

their dynamics and those of XC (t). If one views XC (t) as an input

signal with many frequencies to the derivative motif, the param-

eters gA0, bA, and gM of the derivative motif can be chosen so

that its dynamics are faster than the highest frequencies of the

XC (t) signal. Specifically, if we define a frequency umax as the

upper frequency bound of, for example, 99% of the frequency
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content of XC, representing an upper-bound on the fastest

timescales of XC, then the parameters of the derivative motif

can be chosen such that
���u2

max +gA0
jumax

�� � bAgM (STAR

Methods ‘‘Realizing the derivative control term’’). Evidently, the

maximal frequency umax of XC is that of the closed loop system,

which is dependent on the parameters and the inputs. It would

change over the course of adjusting the control gains (bI, bP,

bD), but an iterative procedure can be used to refine the estimate

of these gains and derivative parameters (STAR Methods ‘‘Real-

izing the derivative control term’’).

Applying the timescale separation above, i.e.,
�� � u2

max +

gA0
jumax

�� � bAgM, we then obtain the following approximate

tracking relationship from Equation 15 between the inputs XC

and Y and the output A

Az � gA

bAgM

dXC

dt
+
bM

gM

Y (Equation 16)

Effectively, Equation 16 shows that A is proportional to the

negative time derivative of the input XC plus a steady-state

value that scales with the reference Y, a result also reproduced

by the simulations of Figures S4 and 3A. This relationship ne-

glects brief fast scale dynamics that occur following step

changes in Y(t), which contain higher frequencies that violate

the condition
�� � u2

max + gA0
umax

�� � bAgM. In this case, the de-

rivative motif will exhibit a fast transient before accurate

tracking of dXCðtÞ=dt occurs. Such transient dynamics can

also occur for step changes in the process parameters as well

as in the parameters of the derivative motif itself. Our simula-

tions and results, however, always use Equations 11 and 12,

which capture all dynamics, slow and fast.

As with proportional control, the addition of a derivative term

to the I control improves its transient response to step Y inputs

and perturbations in bC (compare Figures 3C and 2A). Also,

like proportional control, the fact that A in Equation 16 scales

with Y is crucial for the motif to measure the time derivative of

XC over a large dynamic range. To illustrate this point, we

compare an integral-derivative (ID , fPðXC; YÞ = 0) controller in

which the production rate of M in the derivative calculation

motif does not scale with Y to the design in which it does

(Equation 12). The derivative controller that lacks explicit

dependence on Y also causes loss of perfect tracking (Fig-

ure 3B, left panel) and adaptation (Figure 3B, right panel, and

Figure S1B) at low Y levels. Here again, the I control is not active

until Y is high enough to engage it. At high levels of Y, oscillations

also appear for perturbations in bC. By contrast, basal produc-

tion at low Y and oscillations at high Y do not manifest if the syn-

thesis rate of M in the derivative control design scales with Y

(Figure 3C).

Having explored I , PI and ID control, we can now combine all

three terms to obtain PID control. Figure 3D shows how the in-

clusion of both P and I also improves performance in a manner

that is similar to that of the PI and ID cases (Figures 2D and 3C,

respectively). However, here again, care should be taken in

picking the values of the proportional weight bP and derivative

weight bD. If they are too large compared for a given bI, these

control terms might undermine the integral control (Figures

S1C, S1D, and S1E). To assess the relative contribution of

the different control terms to controller performance, we

explored adaptation times of the output of the closed loop sys-

tem for different values of the control weights following a distur-

bance in bC (Figure S5). For this simple process, the P and the

D showed a relatively additive benefit (inverse relationship in

the heatmap), indicating that in this case, any one of them

can be used alone to maximum benefit for this performance

criterion. In Section ‘‘PID benefits depend on the process to

be controlled and PID gains need to be tuned,’’ we further

explore how the integral and derivative terms affect the perfor-

mance of the PID controller applied to a more complicated

process, illustrating that different processes that need to be

controlled require a different constellation of controller choices.

Thus far, we have neglected dilution due to cell division, which

can introduce some error in set-point tracking (Qian and Del

Vecchio, 2018), due to gdZ1 and gdZ2 appearing in Equations 6

and 7, respectively, for a non-zero dilution rate gd. When we

include dilution for the I, PI, and ID cases from Figures 2A, 2D,

and 3C, respectively (see Figure S6), we get an expected error

in tracking the set point for the I case. However, the addition of

P and D terms helps reduce this error. This is because the P

and D terms reduce the steady-state levels of Z1. For the

remainder of the paper, we return to the assumption that dilution

is zero.

Perturbation Analysis of Nonlinear PID Control Design
Provides Analytical Support for the Design
To provide an analytical interpretation for the proposed PID

controller, we apply linear perturbation analysis to Equations 6,

7, 8, 9, 11, and 12. Even though the simulations above were for

the particular controlled process in Equation 5, the linear analysis

is presented for any general controllable process, allowing

us to compare our design with a traditional textbook example

of a linear PID system extensively used in engineering

(Dorf and Bishop, 1995). In this case, we suppose that the

purpose is to control a process whose output is xC(t) to a set

point r(t) (Figure 1B). That is, we want to drive the error

eðtÞ= rðtÞ � qxCðtÞ to zero using a traditional linear PID controller.

We will assume that rðtÞ=myðtÞ to make this example directly

comparable with the biochemical PID controller.

A traditional PID controller uses an input u(t) into the controlled

process that consists of weighted sums of the error (P control,

kPe(t)), the integral of error (I control, kI
R
eðtÞdt), and the time-de-

rivative of error (D-control, kD
deðtÞ
dt

) to correct deviations from

desired set point (Figure 1B):

uðtÞ= kP½myðtÞ � qxCðtÞ �+ kI

Z t

0

½myðtÞ � qxCðtÞ �dt

+ kD

�
m
dyðtÞ
dt

� q
dxCðtÞ
dt

�
(Equation 17)

A standard framework for analyzing a linear PID control

system is through Laplace-domain and frequency-domain

analysis (Dorf and Bishop, 1995). A Laplace transform trans-

lates time-domain signals, e.g., xC(t), to Laplace-domain

signals xC(s), where s is the Laplace-domain variable

related to frequency u through the relationship s = ju, where

j =
ffiffiffiffiffiffiffi�1

p
. Assuming zero disturbance (dðsÞ = 0), xC(s) is given
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Figure 3. Integral-Derivative Control Can Produce Better Transient Dynamics than Integral Control Alone

(A) Time dynamics of A and a numerical approximation of dXC

dt for the derivative motif in Equations 11 and 12. Plots shown are for Y = 300 nM and perturbations

to bC (see inset).

(B) Time dynamics of output XC(t) following a change in the set-point Y (left panel) or in process parameter bC (right panel). The outcome of bC perturbation is also

shown for different values of Y = ½60; 180; 300; 540� nM. Simulations are shown for process in Equation 5 and controller in Equations 6, 7, and 8 of main text with fP
(XC,Y) = 0. Derivative functionDt (XC,Y) is given byDt (XC,Y) = bDA, where A is the output of the derivative motif in Equations 11 and 12, except that in this case, the

equation for M does not depend on set-point Y.

(C) Time dynamics of output XC(t) for full derivative control design in Equations 11 and 12 with dependence ofM on set-point Y. Compare with Figure 2A (I only).

(D) Simulations for full PID controller under the same conditions as in (B) and (C). See Table S1 for parameter values used in each simulation.
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by xCðsÞ = uðsÞFðsÞ, where F(s) is the process transfer func-

tion between the process input u(s) (the action delivered by

the PID controller) and xC(s) (Figure 1B). Simple calculations

then show that the Laplace-domain relationship between

rðsÞ=myðsÞ and xC(s) for a traditional PID controller is

xCðsÞ = ½kI + skP + s2kD�FðsÞ
s+ q½kI + skP + s2kD�FðsÞmyðsÞ (Equation 18)

In the Laplace domain, steady state is evaluated at s = 0. For

the steady state to be stable, it is required that the real parts of

the poles in Equation 18 are negative. Now assuming that

Figure 4. Comparison of Nonlinear PID Con-

trol to Its Linearized Equations in Response

to Perturbations in Set-point Y

The time dynamics of XC, Z1, and Z2 are plotted for

the full model (dashed blue, Equations 5, 6, 7, 8, 11,

and 12), the linearized model (orange, Equa-

tion S22), the linearized model plus quadratic

correction term, hz1ðtÞz2ðtÞ (red), and the traditional

linear PID (purple, Equation S28, no kDm
dy
dt term; and

green, Equation S28, kDm
dy
dt term) for XC only. Y

values are shown in the top panel. See Table S1 for

parameter values used in each simulation.

Fðs = 0Þs0, the steady-state output

xCðs = 0Þ is equal to myðs = 0Þ=q, as

required for perfect set-point tracking.

This is of course only the case when kI is

non-zero, and therefore integral control is

necessary.

Evidently, the biochemical controller

we are proposing is nonlinear. But we

can determine its local small-signal

properties and relate them to the

textbook framework above (Figure 1B;

Equation 18) using linearization of Equa-

tions 6, 7, 8, 9, 11, and 12 around a steady

state fX1ss ;Z1ss ;Z2ss ;Ass;Mss;XCss
; Yssg

achieved for a desired set point. This

traditional treatment (presented in detail

in STAR Methods ‘‘The control circuit

equations linearized about a set point’’)

generates equations that hold locally

for the behavior of the deviation

fx1ðtÞ; z1ðtÞ; z2ðtÞ; aðtÞ; mðtÞ; xCðtÞg from

the steady-state values as a result of

small perturbations to the system. The to-

tal solution is the steady-state solution

plus the perturbed solution; for example,

the time-dependent solution for XC(t)

would be XCðtÞ = XCss
+ xCðtÞ. Likewise

the input Y(t) would be YðtÞ = Yss + yðtÞ.
Simulations of the linearized controller

compared favorably to the nonlinear

PID system for small to moderate

perturbations (Figure 4 for set-point

tracking, and Figures S7A and S7B

for parameter perturbations). Evidently,

bigger differences between linearized and nonlinear systems

were present for larger perturbations. However, these differ-

ences were muzzled by adding the quadratic term hz1ðtÞz2ðtÞ
of the antithetic reaction to the linearized system, suggesting

that this is the most impactful nonlinearity in the design for the

parameters used.

Using the linearized equations for the biomolecular

controller, we can investigate how the transfer function

between y(s) and xC(s) compares with the traditional PID.

The Laplace-domain transfer function of the linearized

biochemical PID controller (see STAR Methods ‘‘The control
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circuit equations linearized about a set point’’ for derivation) is

given by:

xCðsÞ =

�
bI

s+ hZ1ss

s+ hZ1ss + hZ2ss

+ 3skP +
qbAbM

gAm
skD

�
FðsÞ

s+ q

�
bI

hZ1ss

s+ hZ1ss + hZ2ss

+ skP + s2kD

�
FðsÞ

myðsÞ

(Equation 19)

For the simple processmodel we have used so far (Equation 5),

the transfer function between the process input u(s)

and xC(s) is FðsÞ = bC
ðs+g1Þðs+gCÞ. Evidently, at steady state,

xCðs = 0Þ = myðs = 0Þ=q, consistent with the full nonlinear sys-

tem. In this function, kP is the proportional control gain and kD

is the derivative control gain, which are given by kP =
bP
4m (with

kP = bP
aPq

ðaPÞ2
ðaP +m=qÞ2, for aPsm=q in a general proportional term),

and kD = bD
q

gA

bAgM
, respectively.

While kD and kP only depend on parameters and are therefore

constant, the integral gain terms in the numerator and denomina-

tor of Equation 19 are a function of the Laplace-domain variable

s. As a result, the linearized antithetic integral control does not

exactly map onto a mathematical representation of a traditional

linear integral controller. However, these two representations

converge under clear constraints on the timescale of the integral

controller. Specifically, if umax, defined as the upper frequency

bound of 99% of the frequency content of xC(s) in the closed

loop system, is such that jsmaxj = jjumaxj � hZ1ss , then the func-

tion bI
s+ hZ1ss

s+ hZ1ss +hZ2ss
is almost constant over all frequencies below

umax. Specifically, when this requirement is met then kIz
bIZ1ss

ðZ1ss +Z2ss Þ. Mechanistically, this could be achieved if binding of

the two antithetic molecules that constitute the integral control

is much faster than the dynamics of the transcriptional process

to be controlled, and this approximation also improves with

increasing Y, which corresponds to increasing Z1ss (see STAR

Methods ‘‘The control circuit equations linearized about a set

point’’ and Figure S7C). Substituting kI into the transfer function

in Equation 19 becomes

xCðsÞz

�
kI + 3skP +

qbAbM

gAm
skD

�
FðsÞ

s+ q½kI + skP + s2kD�FðsÞ myðsÞ (Equation 20)

In this approximate transfer function, kI, kP, and kD are now

all constants, and the similarities between this equation and

that of the traditional PID controller in Equation 18 become clear.

Equation 20 has the same denominator (poles of the transfer

function) as the traditional PID controller in Equation 18). But,

the two expressions have different numerators (zeros for the

transfer function). First, there is a difference in the numerator

term that multiplies the proportional gain (skP versus 3skP). The

proportional control term in a traditional PID controller acts on

the standard tracking error (i.e. kPðmy�qxCÞ in this case). The

structure of Equation 9 generates a linearized proportional con-

trol function that acts on a different quantity, manifesting as

3kPmy� kPqxC, which is at the root of the difference in the propor-

tional term. This multiplicity of the term kPy is in fact the result of

Y appearing in multiple places in Equation 9, which leads also to

multiplicity in the linearization (see STAR Methods ‘‘The control

circuit equations linearized about a set point’’).

Second, the term that multiplies the derivative gain in the

biochemical design is given by qbAbM
gAm

skD, while its counterpart

in a traditional design would be s2kD. This difference can be ex-

plained by the fact that the derivative control term in a traditional

PID controller acts on the tracking error, i.e. kD

�
m

dy
dt � q dxC

dt

�
,

while as we discussed above, the biomolecular implementation

of derivative control computes a scaled form of dXC

dt that is also

dependent on the reference Y, but not its derivative (see

Equation 16. For the simple process simulated in Figure 4, the

linearized biochemical PID controller showed similar properties

as the traditional linear PID controller for set-point tracking

(Figure 4A) and parameter perturbations (Figures S7A and

S7C, Section ‘‘The control circuit equations linearized about a

set point’’). Indeed, for this system, the presence of a kDm
dy
dt

term (that is, having an s2kD in the numerator of the transfer

function) has an insignificant effect on set-point tracking. This

is of course not true for more complex processes, and we

show in Section ‘‘PID benefits depend on the process to be

controlled and PID gains need to be tuned’’ that for one such

process, the presence of a kDm
dy
dt term (and hence a full depen-

dence of the derivative term on the tracking error) improves

set-point tracking dynamics. If this improvement is required

for the desired application, a modified version of our D motif

can be considered, which can add an s2kD term in the numerator

of Equations 19 and 20 above, but at the cost of increased

biochemical complexity (see STAR Methods ‘‘An alternative

derivative motif’’ and ‘‘Linearized analysis of the alternative de-

rivative motif’’ for details).

It is useful to note here, however, that while the s2kD term is

relevant to set-point tracking, it is not relevant for adaptation to

parameter perturbations. This can be seen from Equation 20,

where the input of the linearized biochemical controller u(t) to

the process is

uðtÞ= kP½3myðtÞ � qxCðtÞ �+ kI

Z t

0

½myðtÞ � qxCðtÞ �dt

+ kD

�
qbAbM

gAm
myðtÞ � q

dxCðtÞ
dt

�
(Equation 21)

For step changes in process parameter values, in which the

change in input is myðtÞ = 0, the controller input u(t) is identical

for both the traditional and biochemical PID (compare Equations

17 and 21 for myðtÞ = 0). Therefore, they control a given process

in the sameway upon perturbations to process parameter values

(further discussion of this comparison is given in STAR Methods

‘‘The control circuit equations linearized about a set point’’ with

examples in Figure S7C).

Finally, Equation 20 and the expressions derived for the

effective kI, kP, and kD provide an analytical framework to discuss

the differences in behavior seen for different implementations of

the proportional feedback mechanism of Section ‘‘Design of a

proportional control term.’’ As mentioned above, kP is constant

across set points for our proposed design of proportional

feedback, at least in the linearized regime. For other proportional
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functions that were tested and generated narrower dynamic

range, that is for bP
ðmKC=qÞ

ðmKC=qÞ+XC
and bP

ðmY=qÞ
ðmY=qÞ+XC

, the linearized pro-

portional gains are given by kP = bP
ðmKC=qÞ

qððmKC=qÞ+mYss=qÞ2 and kP = bP
4mYss

,

respectively. For both cases, kP decreases to zero as Y in-

creases, indicating that kP becomes insignificant at higher Y,

leaving only an I control like behavior (compare Figures 2A–2C,

right panel). For low Y, where these proportional functions

caused basal levels of XC, the integral control is not active and

Z2 grows at a positive constant rate since Z1 is too low to

contribute to its annihilation (see Figure S1A). While the other

variables in the system reach a steady state, the increasing

level of Z2 causes Z1 and kIzbIZ1=ðZ1 +Z2Þ to go to zero, i.e.,

the integral controller is broken and has no effect on the

system. Thus, the system loses perfect tracking and adapta-

tion capabilities. These analytical considerations, therefore,

further support the conclusions reached by numerical analysis

of the control system in its nonlinear operation (Figures 2D

and 3C).

They allow us, in addition, to explore questions about control

theoretic properties of the biochemical controller that could be

inferred through its quantitative resemblance to the traditional

PID controller. For example, the transfer functions of the two

controllers only differ in their kI, with kI = bI
Z1ss

Z1ss +Z2ss
for the

biochemical controller. As a result, we can infer that if the tradi-

tional controller is stabilizing of a given process for kI = bI and

for smaller kI, then the biochemical controller is also stabilizing.

Other properties can also be explored using this linearization

framework, a fertile ground for future research.

PID Benefits Depend on the Process to Be Controlled
and PID Gains Need to Be Tuned
To move our analysis beyond a simple process that only

contains a simple transcriptional step, we consider a more

general multi-step process connecting X1 to XC with negative

feedback defined by the following equations

dXD1

dt
=

N

tD
X1 � N

tD
XD1

� gFXC

XD1

XD1
+KF

(Equation 22)

dXDi

dt
=

N

tD
XDi�1

� N

tD
XDi

(Equation 23)

dXC

dt
= bCXDN

� gCXC (Equation 24)

for 2% i%N, andwith X1 still given by Equation 8. Themulti-step

process between X1 and XC has a mean response time of tD
broken into N steps.

We now consider two specific process examples. First, when

gF = 0 min�1, tD = 20 min, N = 2, we obtain a process in which

the open loop response for a step change in Z1 monotonically

increases to its new steady state and does not contain

oscillations (Figure 5A). Second, for tD = 40 min, N = 4, and

gF = 0:2 min�1, we generate a process in which a negative

feedback loop from XC onto XD1
exists. In this case, the open

loop process response exhibits damped oscillations (Figure 5B).

We explore the benefits of introducing feedback control for

the two processes. For the first process, a tuned PI controller

can achieve a dynamic response with almost no overshoot

(Figure 5A, bottom plot, blue curve). Increasing kI in this PI

controller is detrimental as it adds some overshoot (Figure 5A,

bottom plot, red curve) that cannot be corrected by adding a

derivative control term (Figure 5A, bottom plot, orange curve).

By contrast, for the second process, even a tuned PI controller

still generates a closed loop response with a slow oscillating

convergence to the set point (Figure 5B, bottom plot, blue curve).

Here, however, addition of a derivative control term improves

this transient performance (Figure 5B, bottom plot, orange

curve). A thorough investigation of this system as a function of

the control weights indicates that ID control is an adequate

choice (Figure 6).

Finally, changing the input to the derivative motif from XC to

XC=ðmY + qXCÞ achieves an approximate kD
dy
dt term in the

biochemical derivative controller, whose linearization now yields

an output that is proportional to mdy=dt� qdxC=dt, the time

derivative of the error (see STAR Methods ‘‘An alternative

derivative motif’’ and ‘‘Linearized analysis of the alternative

derivative motif’’ for details). Evidently, this term increases

the complexity of the derivative motif, but its application signifi-

cantly reduces overshoot and improves the convergence

rate relative to having no kD
dy
dt term (Figure 5C, left panel). As

explained above, this additional term does not impact adapta-

tion to changes in process parameters (Figure 5C, right panel).

Taken together, these results indicate that the benefits of

a full PID controller manifest differently for different biological

processes and furthermore, that the contributions of the

different feedback modalities also need to be tuned and

refined based on the specific properties and timescales of the

biological process to be controlled. This is similar to consider-

ations that are routinely used in the design and implementa-

tion of control strategies in technological systems.

While we have demonstrated the applicability of the PID

controller to an a example of a more complex process, more

work needs to be done to demonstrate its applicability to very

large-scale processes. In STAR Methods ‘‘Applicability of

antithetic PID controller to arbitrary processes,’’ and Figure S8A,

we discuss the mathematical requirements to achieve this.

Constructing a PID Controller with a Different Integral
Controller Architecture
We have so far exclusively designed and analyzed propor-

tional and derivative control architectures that are used with

the particular antithetic integral control strategy of Briat et al.

(2016). However, given the additivity of the control terms in

Equation 8, any input from a control design that can implement

integral action can be readily used instead. For example, since

the proportional control function fP (XC,Y) in Equation 10 has

the tracking error encoded within, any biomolecular device

that can integrate this function has the potential of implement-

ing integral action, and can therefore, be used along with the P

and D terms we proposed. To see this, let us assume that one

can construct a variable Z that has a rate of change dictated

by the following equation:

dZ

dt
= bZY

mY

mY + qXC

� gZY
Z

Z +KZ

(Equation 25)
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Figure 5. PID Benefits Depend on the Process to Be Controlled and PID Gains Need to Be Tuned Accordingly

(A and B) Top illustration shows a molecular diagram of the process to be controlled, middle plot shows the open loop response of a process to a step change in

Z1 (as defined in Figure 1A, but no feedback [Z2 = 0]), and the bottom plot shows set-point tracking dynamics for different parameters of the feedback controller.

(A) Process withN = 2, tD = 20 min, and gF = 0 min�1. Open loop response does not show pronounced oscillations. Tuned PI controller (case 1: with kI = 0.00375,

kP = 0.09, and kD = 0) generates set-point tracking with satisfactory dynamics. Change in kI (case 2: kI = 0.0046, kP = 0.09, and kD = 0) generates a larger transient

response, and addition of derivative control term (case 2 + D: kI = 0.0046, kP = 0.09, and kD = 0.5) does not lead to any improvement. (B) Process with N = 4 (tD =

40 min, and gF = 0:2 min�1) and negative feedback. Open loop response shows damped oscillations. Tuned PI controller (kI = 0.02, kP = 0.03, and kD = 0)

generates set-point tracking with oscillations. Addition of a derivative control term (PI+D: with kI = 0.02, kP = 0.03, and kD = 4) improves the transient response.

(C) Plot of XC(t) as a function of time for different variations of derivative controller. Left plot: tracking following input set-point changes is improved in PID

controllers with the addition of kDdY=dt term in an alternate derivative motif (see STAR Methods ‘‘An alternative derivative motif’’ and ‘‘Linearized analysis of the

alternative derivative motif’’ for details). Right plot: response following a step change in a process parameter is very similar across PID controllers since their

analytical expression coincide for this kind of perturbation.
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In addition to the function bZY
mY

mY + qXC
governing the production

of Z, it is also actively degraded as a function of Y. Solving for XC

at steady state, Equation 25 becomes

XCss =

�
bZ

gZ

Z +KZ

Z
� 1

�
m

q
Y (Equation 26)

If this active degradation term (Michaelis-Menten function)

also occurs at saturation (KZ � Z), we then have the approxi-

mate steady-state equation.

XCssz

�
bZ

gZ

� 1

�
m

q
Y (Equation 27)

where one sees that XCss
is proportional to Y, hence implement-

ing perfect tracking. To ensure this relationship, in addition to the

saturation constraint KZ � Z, we are also constrained by the

inequality bZ
gZ
>1. This is required for the active degradation to be

able to operate near saturation to enable integral control (see

STAR Methods ‘‘Steady-State analysis of integral controller

from Equation 25’’ and Figure S8B for analytical and graphical

analysis).

To implement a PID controller, Z can then be input into the

control of X1 in the same fashion as Z1 from the antithetic motif:

dX1

dt
= b�

I Z + bPY
mY

mY + qXC

+ bDA� g1X1 (Equation 28)

Figure 6. Adaptation Time as a Function of Control Weights for the Multi-step Process with Negative Feedback

(Second Example in Section ‘‘PID Benefits Depend on the Process to be Controlled and PID Gains Need to be Tuned’’ and Figure 5B).

(A) Plot of adaptation time as a function of control parameter weights. Each point on the heat map corresponds to a different value of bP and bD, and the color

corresponds to the measured adaptation time according to the color-bar on the bottom. In each case a simulation is started from the steady states for bC =

0:1 min�1; the value of bC is then changed to bC = 0:15 min�1, and the system simulated for 1,000min. Following this perturbation to bC, the system is assumed to

have reached steady state onceXC = hXCi ± ε, where hXCi corresponds to steady state of XC after the perturbation and ε is equal to 5%of themaximumobserved

‘‘overshoot’’ or change with respect to hXCi (see Figure S5A). The bin is in black if adaptation took too long (i.e. more than 1,000 min). Each panel shows

adaptation for a different Y = ½300; 600� nM and bI = ½0:015; 0:02� min�1 ; see Table S1 for all other parameter values used in these simulations. Numbers of plot

correspond to parameter values further explored in (B).

(B) Examples of adaptation dynamics for different values of bP and bD, with Y = 300 nM and bI = 0:02 min�1. These examples map to the numbers shown on the

lower left plot in (A). For this process, the ID controller achieves the best results.
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We investigated the use of this new integral controller design

as a stand-alone, or in PID configurations (replacing Equations

6, 7, and 8 with Equations 25 and 28). To compare this new

design with the antithetic design, we enforced bZ
gZ

= 2, which pre-

served XCss
= mY=q. In the linearized regime, and unlike the anti-

thetic controller, the new design generated a constant integral

weight kI =
b�I bZ
4m (for derivation of kI for this new PID see STAR

Methods ‘‘Linearized analysis of the integral controller from

Equation 25’’), which we set to be equal to the highest generated

control weight of the antithetic design. The values for the

Figure 7. Proportional and Derivative Control Terms Improve Adaptation Dynamics Using a New Integral Controller Design

(A) Time dynamics of output XC(t) following a change in the set-point Y (left panel) or in process parameter bC (right panel). The outcome of bC perturbation is also

shown for different values of Y = ½60; 180; 300; 540� nM. Simulations are shown for the process in Equation 5 and new integral controller design in Equations 25

and 28 (I control; fP (XC,Y) = 0 and Dt (XC,Y) = 0).

(B) Time dynamics of output XC(t) with the addition of proportional and derivative control (PID control) using new integral controller design. Parameters used in (A)

and (B) are listed in Table S1. (C) Time dynamics of output XC(t) with derivative control (ID control) using new integral controller design applied to the complex

process simulated in Figure 5C. The new integral controller uses the same value of kI as that simulated in Figure 5C with all other parameters of the integral

controller being the same as in (A) and (B).
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proportional and derivative controller were kept unchanged,

and thus, both designs share the same kP and kD. For all pertur-

bations tested, applied to the simple process (Equation 5) , the

new integral controller exhibited the same properties as the

antithetic implementation (Figure 7A), and its performance

was improved by addition of the proportional and derivative

control terms (Figure 7B). The new integral controller also

generated similar properties as the antithetic implementation

when applied to the complex process of Figure 5C (Figure 7C).

Taken together, these results indicate that the PID design

we propose is modular, and that swapping implementations

can be readily done as more designs emerge and are adopted.

DISCUSSION

We present in this work a design schema for a biology-specific

PID controller. PID control has been one of the main work-

horses of modern engineering, delivering facile, modular, and

tunable control for many applications that we encounter in

our everyday life, for example, the thermostat in our homes.

A biochemical PID control strategy endowed with the same

properties might also prove to be a general enabling technol-

ogy for many synthetic biology applications. Our launching

design was that for an integral (I) control strategy based on a

simple antithetic relationship between two molecules devel-

oped by Briat et al. (2016), which we updated with newly de-

signed biochemical proportional (P) and derivative (D) control-

lers. Much like their technological counterparts, these

additional control terms alleviate the stability constraints of

the use of integral control alone, and provide a malleable and

tunable platform to modulate transient dynamics of a controlled

system, for example, damping down or shortening oscillations.

Importantly, through analytical methods, we could relate these

designs directly to a traditional formulation of a PID controller,

an analogy that facilitates the design and analysis of the

biochemical controller based on established theories and

practices in other fields. An important feature of the design

we propose is its modularity, which we illustrate by exploring

PI and ID designs as stand-alone possibilities, and also by

swapping the antithetic integral controller with a new imple-

mentation inspired by the proportional design strategy (Section

‘‘Constructing a PID controller with a different integral controller

architecture’’). These properties might prove to be essential

for applications in metabolic engineering and cellular therapeu-

tics where different considerations and tradeoffs might be at

play, and hence different combinatorial variations of the three

terms (P, I, or D) might be needed and appropriate. They also

might facilitate mixing and matching our designs with those

of others, for example using implementation of a naturally

occurring derivative motif that was recently analyzed (Hancock

et al., 2017) and shown to exhibit excellent noise suppression

characteristics at high frequencies.

While this paper presents a crucial first step for designing

these control motifs, further analysis is needed to allow for

their efficient and predictable use. For example, here we only

considered a deterministic treatment of the biochemical

controllers and processes to be controlled. Biochemical reac-

tions are, of course, stochastic, and it is well known that the

behavior of a single cell can diverge significantly from that of

the population average. As a result, the deterministic analyses

we present should be followed with thorough stochastic ana-

lyses to indicate when the two behaviors diverge and provide

further guidance for the use of these controllers under condi-

tions where stochastic effects dominate (Briat et al., 2016). In

addition to probabilistic effects of biochemical reactions, it is

also often the case that cells experience large variability in

their general characteristics, for example, in the abundance of

proteins. With this in mind, we investigated in this work the

effect of parameter perturbations as a proxy, exploring when

and how our controllers are able to tackle such changes. The

analyses we present are evidently not exhaustive, and much

work would need to be devoted to test the robust operation

of the controllers we propose to such meaningful sources of

variability. More analyses are also needed to determine the

extent to which the controllers we propose are able to accom-

plish various control specifications, for example, the accurate

tracking of a time-varying input signal Y.

While the work we report here presents a design for a general

biochemical PID controller, as well as plausible suggestions in

terms of molecular building blocks, a robust infrastructure

needs to be developed in order to accelerate their implementa-

tion and testing. For example, design and implementation of a

PID controller for technological systems usually proceeds by

experimenting on the system to be controlled in order to deter-

mine its properties and hence the controller parameters that

might be the most suitable. In our case, the success of the

controller design relies on identifying the slower timescale of

the process and positioning clearly defined parameters of the

proportional and derivative controller accordingly. Often time,

controller parameters are also fine-tuned in real time during

system operation. Carrying out the same process for a

biological controller is a formidable challenge, given the long

timescales required to build and test in a cell a large number

of control strategies or parameter variants. We are hopeful

that progress in cellular engineering, as well as more studies

that tackle efficient system identification in biological systems,

will make this cycle more productive, proceeding on time-

scales that are compatible with rapid deployment of these

technologies to various applications.
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Muzzey, D., Gómez-Uribe, C.A., Mettetal, J.T., and van Oudenaarden, A.

(2009). A systems-level analysis of perfect adaptation in yeast osmoregulation.

Cell 138, 160–171.

Purcell, O., Savery, N.J., Grierson, C.S., and di Bernardo,M. (2010). A compar-

ative analysis of synthetic genetic oscillators. J. R. Soc. Interface 7,

1503–1524.

Qian, Y., and Del Vecchio, D. (2018). Realizing ’integral control’ in living cells:

how to overcome leaky integration due to dilution? J. R. Soc. Interface 15.

Strogatz, S.H. (2014). Nonlinear dynamics and chaos, Second edition

(Westview Press).

Yi, T.M., Huang, Y., Simon, M.I., and Doyle, J. (2000). Robust perfect adapta-

tion in bacterial chemotaxis through integral feedback control. Proc. Natl.

Acad. Sci. USA 97, 4649–4653.

16 Cell Systems 9, 1–16, October 23, 2019

Please cite this article in press as: Chevalier et al., Design and Analysis of a Proportional-Integral-Derivative Controller with Biological Molecules, Cell
Systems (2019), https://doi.org/10.1016/j.cels.2019.08.010

https://doi.org/10.1016/j.cels.2019.08.010
https://doi.org/10.1016/j.cels.2019.08.010
http://refhub.elsevier.com/S2405-4712(19)30308-4/sref1
http://refhub.elsevier.com/S2405-4712(19)30308-4/sref1
http://refhub.elsevier.com/S2405-4712(19)30308-4/sref1
http://refhub.elsevier.com/S2405-4712(19)30308-4/sref2
http://refhub.elsevier.com/S2405-4712(19)30308-4/sref2
http://refhub.elsevier.com/S2405-4712(19)30308-4/sref2
http://refhub.elsevier.com/S2405-4712(19)30308-4/sref3
http://refhub.elsevier.com/S2405-4712(19)30308-4/sref3
http://refhub.elsevier.com/S2405-4712(19)30308-4/sref3
http://refhub.elsevier.com/S2405-4712(19)30308-4/sref4
http://refhub.elsevier.com/S2405-4712(19)30308-4/sref4
http://refhub.elsevier.com/S2405-4712(19)30308-4/sref5
http://refhub.elsevier.com/S2405-4712(19)30308-4/sref5
http://refhub.elsevier.com/S2405-4712(19)30308-4/sref6
http://refhub.elsevier.com/S2405-4712(19)30308-4/sref6
http://refhub.elsevier.com/S2405-4712(19)30308-4/sref6
http://refhub.elsevier.com/S2405-4712(19)30308-4/sref7
http://refhub.elsevier.com/S2405-4712(19)30308-4/sref7
http://refhub.elsevier.com/S2405-4712(19)30308-4/sref7
http://refhub.elsevier.com/S2405-4712(19)30308-4/sref8
http://refhub.elsevier.com/S2405-4712(19)30308-4/sref8
http://refhub.elsevier.com/S2405-4712(19)30308-4/sref8
http://refhub.elsevier.com/S2405-4712(19)30308-4/sref9
http://refhub.elsevier.com/S2405-4712(19)30308-4/sref9
http://refhub.elsevier.com/S2405-4712(19)30308-4/sref9
http://refhub.elsevier.com/S2405-4712(19)30308-4/sref9
http://refhub.elsevier.com/S2405-4712(19)30308-4/sref10
http://refhub.elsevier.com/S2405-4712(19)30308-4/sref10
http://refhub.elsevier.com/S2405-4712(19)30308-4/sref11
http://refhub.elsevier.com/S2405-4712(19)30308-4/sref11
http://refhub.elsevier.com/S2405-4712(19)30308-4/sref11
http://www.sciencedirect.com/science/article/pii/0005109876900066
http://www.sciencedirect.com/science/article/pii/0005109876900066
http://refhub.elsevier.com/S2405-4712(19)30308-4/sref13
http://refhub.elsevier.com/S2405-4712(19)30308-4/sref13
http://refhub.elsevier.com/S2405-4712(19)30308-4/sref13
http://refhub.elsevier.com/S2405-4712(19)30308-4/sref14
http://refhub.elsevier.com/S2405-4712(19)30308-4/sref14
http://refhub.elsevier.com/S2405-4712(19)30308-4/sref14
http://refhub.elsevier.com/S2405-4712(19)30308-4/sref15
http://refhub.elsevier.com/S2405-4712(19)30308-4/sref15
http://refhub.elsevier.com/S2405-4712(19)30308-4/sref16
http://refhub.elsevier.com/S2405-4712(19)30308-4/sref16
http://refhub.elsevier.com/S2405-4712(19)30308-4/sref16
http://refhub.elsevier.com/S2405-4712(19)30308-4/sref17
http://refhub.elsevier.com/S2405-4712(19)30308-4/sref17
http://refhub.elsevier.com/S2405-4712(19)30308-4/sref17
http://refhub.elsevier.com/S2405-4712(19)30308-4/sref18
http://refhub.elsevier.com/S2405-4712(19)30308-4/sref18
http://refhub.elsevier.com/S2405-4712(19)30308-4/sref18
http://refhub.elsevier.com/S2405-4712(19)30308-4/sref19
http://refhub.elsevier.com/S2405-4712(19)30308-4/sref19
http://refhub.elsevier.com/S2405-4712(19)30308-4/sref19
http://refhub.elsevier.com/S2405-4712(19)30308-4/sref20
http://refhub.elsevier.com/S2405-4712(19)30308-4/sref20
http://refhub.elsevier.com/S2405-4712(19)30308-4/sref21
http://refhub.elsevier.com/S2405-4712(19)30308-4/sref21
http://refhub.elsevier.com/S2405-4712(19)30308-4/sref22
http://refhub.elsevier.com/S2405-4712(19)30308-4/sref22
http://refhub.elsevier.com/S2405-4712(19)30308-4/sref22


STAR+METHODS

KEY RESOURCES TABLE

LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources should be directed to and will be fulfilled by the Lead Contact, Michael Chevalier

(Michael.Chevalier@ucsf.edu).

METHOD DETAILS

Experimental Realization of X1 Equation
A simple way to realize the sumof the control terms in Equation 8 is one in which every control action would result in the activation of a

transcription factor that drives a different promoter, whose output is X1. In this paper, these transcription factors are, Z1 for the I term,

TP from Equation S3 for the P term, and A from Equation 11 and 12 for the D term. Therefore, the total X1 would be the sum of the

output of all three promoters. While there exist some synthetic promoters that may be applicable for this purpose (Aranda-Dı́az et al.,

2017), it is currently a non-trivial exercise to engineer and tune promoters.

Experimental Realization of Proportional Control Function
Here, we describe a design for realizing the proportional function fP (XC,Y) fromEquation 9 inmain text. Many designs can achieve this

function, but we focus on one that relies on technologies that are currently available (Aranda-Dı́az et al., 2017).

The main building block in this design is an inducible transcription factor TY, which is constitutively expressed at high levels. In the

absence of an activating ligand, this transcription factor resides outside the nucleus and it is therefore inactive. TY is, for example, a

synthetic chimeric transcription factor that has an activating ligand binding domain (LBD) (Aranda-Dı́az et al., 2017). In the presence

of the cognate ligand, TY is activated and translocates to the nucleus where it activates a target promoter pTP. We can modulate the

level of active TY by adjusting the ligand concentration Y, predictably achieving a level of activated transcription factor TY� where

TY� =GPY (Aranda-Dı́az et al., 2017).

We assume that TY� and the output of the process, XC, can compete for a binding site at the promoter pTP (see Figure S2A). At the

promoter, either TY� is bound, XC is bound, or neither is bound. Therefore, there are three possible promoter states, and transcription

can occur only in the active TY-bound state (TY�). Assuming these binding events occur faster than transcription itself, the transcrip-

tion rate of gene TP can be computed to be:

HðXC; TY Þ= b0

RPTY�
RPTY� +XC + εP

zb0

RPGPY

RPGPY +XC + εP

(Equation S1)

RP is the ratio of the dissociation constants of TY and XC, and εP is the dissociation constant of XC. Here we assume that TY and XC

have the same binding kinetics to pTP. This assumption and the competition at the binding site can be achieved when TY and XC are

exactly the same transcription factor protein, but XC has a crippled transcription activation domain. This can be readily achieved with

modular synthetic transcription factors (Aranda-Dı́az et al., 2017). In this case, RP z 1. Either way, we set RPGP = aP to get

HðXC;TY Þzb0

aPY

aPY +XC + εP

(Equation S2)

If we choose the minimum set-point to be aPY[εP, then such a design would generate the first proportional function analyzed in

the main text that scales with the input Y.

To realize the final proportional function, we further assume that the output of the motif above, TP, is a transcription factor whose

dynamics are governed by the equation:

dTP

dt
= HðXC; TY Þ � gTP

TP (Equation S3)

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and Algorithms

MATLAB Mathworks www.mathworks.com

MATLAB code used for all simulations and

calculations

this study https://github.com/mgschiavon/

bioPIDcontrol
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If gTP has a fast decay rate, then TPzHðXC;TY Þ=gTP
. Like TY, TP is a cytosolic (inactive) transcription factor that needs to be acti-

vated by a ligand to go into the nucleus. Here again, we canmodulate externally the active TP to be proportional toY through changing

ligand concentration, setting the activated transcription factor level to T�
P = FPYTP = FPYHðXC;TYÞ=gTP

. If X1 is now generated at a

rate bnT
�
P by binding of T�

P to a cognate promoter, then this generates the proportional control equation:

fPðXC;YÞ= bnFPb0

gTP

Y
aPY

aPY +XC + εC

= bPY
aPY

aPY +XC + εC

(Equation S4)

Adding Active Degradation to the X1 Equation
We add an active degradation term, � ashiftbPY

2
X1

X1 +KX1

, for X1 in Equation 8 in main text to get

dX1

dt
= bIZ1 +

�
bPY

mY

mY + qXC

� ashiftbPY

2

X1

X1 +KX1

�
+ bDA� g1X1

= bIZ1 +

�
bPY

2
+
bP

2m

mY

mY + qXC

½mY � qXC� � ashiftbPY

2

X1

X1 +KX1

�
+ bDA� g1X1

(Equation S5)

When this degradation proceeds at near saturation, that is X1

X1 +KX1

z1 and ashiftz1, then the proportional controller is not dependent

on a shifted expression of the error since the term bPY
2 cancels out. For cases when perfect adaptation can be lost for the original

controller upon perturbation to process parameter bC (Figure S3A), it is maintained for the controller updated with this degradation

term (Figure S3C). This occurs because in the first case, Z1 becomes ineffective in this regime, while the addition of the degradation

term extends the range of non-zero Z1. These results suggest that including this additional term allows the system to endure larger

positive changes in bC (and bP) before it loses integral control. It is important to note that while it is very difficult to perfectly tune ashift

to be exactly one, any non zero value for this parameter can provide some benefit (Figure S3B).

Realizing the Derivative Control Term
Here, we present details of Equation 16, the approximate time derivative representation of XC from Section ‘‘Design of a derivative

control term’’ in the main text. Transforming Equation 15 to the Laplace domain with Laplace-domain variable s yields

s2AðsÞ + gA0
sAðsÞ+ bAgMAz� gAsXCðsÞ+ bAbMYðsÞ (Equation S6)

and where s = juwith u being the frequency domain variable and j =
ffiffiffiffiffiffiffi�1

p
. Here we are enforcing that our initial conditions for A(t) are

zero, i.e. Aðt = 0�Þ= 0 and dAðt = 0�Þ=dt = 0. Essentially, the system is off for t < 0 where Y(t) and XC(t) are zero for t < 0. At t = 0 the

system is turned on through a positive step change in Y(t). Solving for A(s) yields

AðsÞz � gAsXCðsÞ
s2 +gA0

s+ bAgM

+
bAbMYðsÞ

s2 +gA0
s+ bAgM

(Equation S7)

To realize derivative control, we need to design parameter regimes for this motif where A(s) is approximately proportional to sXC(s),

the Laplace-domain representation of the time derivative of XC.

To do so, we need to design the parameters of the derivative motif so that the denominator of the XC(s) bandpass transfer function,

i.e. � gAs
s2 +gA0

s+bAgM
= � gAju

ðjuÞ2 +gA0
ju+ bAgM

, becomes influential only at high frequencies. That is, at timescales faster than the

fastest timescales of XC(ju). To begin, let’s first define F to be F =
R smax

0 jXCðsÞjds=
RN
0 jXCðsÞjds, where smax = jumax. Thus, F =R umax

0 jXCðjuÞjjdu=
RN
0 jXCðjuÞjjdu. Here umax is defined as the upper frequency of the integrand where the integral equals F. For

this paper we choose F = 0.99. This is the frequency below which resides most of the frequency content of XC(ju). A conservative

design choice is to suppose that the parameter values of the derivative motif are chosen such that bAgM[
��s2max + gA0

smax

��. Like-
wise, the frequency domain equivalent would be bAgM[

�� � u2
max + gA0

jumax

��. We denote these equivalent expressions as our

design constraint. When the design constraint is satisfied, we obtain

AðsÞz � gAsXCðsÞ
bAgM

+
bAbMYðsÞ

s2 +gA0
s+ bAgM

(Equation S8)

The expression sXC(s) in the Laplace domain corresponds to dXC

dt in the time domain. Transforming back to the time-domain yields

the approximate expression

Az� gA

bAgM

dXC

dt
+ hY � Y (Equation S9)

where A is approximately equal to the negative time-derivative of XC plus the impulse function between Y and A, i.e. hY, convolved

with Y. Here hY is the inverse Laplace transform of the transfer function between Y(s) and A(s) in Equation S8. In this paper, Y is a
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succession of step functions initially starting at Y = 0. Other than the sudden jump during a step change, Ywill be at its current steady-

state set-point value. During step changes in Y, where step changes contain higher frequencies that violate the design constraint,

there will be brief fast transients in the time domain signal of A before accurate tracking of dXC

dt occurs. Thus, after this brief transient,

hY � Y = bMY=gM. Neglecting this brief transient yields the tracking relationship Equation 16 in the main text. This implies that the

signal of d2AðtÞ
dt2

+gA0

dAðtÞ
dt will, on average, be much smaller in magnitude than the signal of bAgMA(t) since d2AðtÞ=dt2 and gA0

dAðtÞ=
dt are not present in Equation 16. Figure S4 illustrates cases (different XC inputs) when the design constraint is preserved, as well

as cases when it is violated.

To be clear, themaximal frequencyumax of XC is that of the closed loop system, dependent on the parameters and the inputs. And it

would change over the course of adjusting the control gains (bI, bP, bD) while optimizing a design. This implies a very important ques-

tion which is: what is the best way to iterate through designs of the PID controller when umax is changing for each design? Compu-

tationally, a quick and accurate way to iterate through designs, without needing umax, is to first design the control parameters (bI, bP,

bD) without the derivative motif. Instead, in the X1 equation, we use an ideal derivative where we set A = � gA

bAgM
dXC=dt +

bM
gM

Y. This is

easy to do since we calculate dXC=dt in the ODE solvers during simulations. Once an acceptable design is obtained, we have umax

over a whole range of set points, etc. We choose the highest one over the operational range of the controller. We then apply it to the

frequency domain design constraint,
���ðjumaxÞ2 + gA0

jumax

��� � bAgM, where we can then easily solve for the derivative motif param-

eters in Equations 11 and 12 to ensure an accurate derivative tracker.

Analysis of Poles in Equation S7
The denominator in the transfer functions of the right side of Equation S7, i.e. s2 + gA0

s + bAgM, represents the multiplication of the

poles of the system. The roots of the poles are solved using the quadratic formula which yields

s = � gA0

2
±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2
A0

� 4bAgM

q
2

(Equation S10)

This is a stable system since gA0
, bA, and gM are all positive, therefore ensuring that the real parts of both poles are negative.

Belowwe analyze different relative values between gA0 and bAgM to determine the timescales of the poles, relative toumax. To facil-

itate this, we present a more usable form of the design constraint
���u2

max +gA0
jumax

�� � bAgM which can be written as

���u2
max + gA0

jumax

��%bAgM

N
(Equation S11)

where 1/N is the acceptable relative error tolerance. In the paper, we use N = 10, a standard order of magnitude difference. Next

without any loss of generality, we set gA0
=

ffiffiffiffiffiffiffiffiffiffiffiffi
bAgM

p
=K, where K is any positive real number. We define umax� as the upper bound

on umax that satisfies Equation S11 above. We would like to solve for umax� as a function of the parameters, and compare that to

the poles of the system. Squaring both sides of the design constraint yields

u4
max� +

bAgM

K2
u2

max� =
�bAgM

N

	2

(Equation S12)

Solving for u2
max� give us

u2
max� = � 1

2

bAgM

K2
±
bAgM

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

K4
+

4

N2

r
(Equation S13)

We take the positive solution to get

umax� =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bAgM

2

"
� 1

K2
+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

K4
+

4

N2

r #vuut (Equation S14)

Also, for this relationship between gA0
and bAgM, the poles are given by:

s = �
ffiffiffiffiffiffiffiffiffiffiffi
bAgM

p
2K

±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bAgM

�
1
K2 � 4

�s

2
(Equation S15)

It is then clear that if K > 1/2, then the poles are complex, and conversely if K < 1/2, then the poles are real. Also, since 4
N2 � 1, then

for cases when K % 1, the
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1
K4 +

4
N2

q
term from Equation S14 above can be approximated to a first order as 1

K2 +
2K2

N2 which we will use

(see Derivation 1 below). We now discuss a few parameter regimes:

d Case 1:K = 1, that is g2
A0

= bAgM. The poles of the system are complex, with the same real part being � ffiffiffiffiffiffiffiffiffiffiffiffi
bAgM

p
=2. In this case, it

can be shown that
ffiffiffiffiffiffiffiffiffiffiffiffi
1+ 4

N2

q
can be approximated as 1+ 2

N2 (seeDerivation 1 below that shows an approximation that is valid for
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all K less or equal than one). Plugging this into Equation S14 yields umax�z
ffiffiffiffiffiffiffiffiffiffiffiffi
bAgM

p
=N. Given that gA0

=2=
ffiffiffiffiffiffiffiffiffiffiffiffi
bAgM

p
=2 then the real

part of the poles is about N/2 times faster than umax� . For this case, the magnitude of the real part of the pole, gA0
=2 is large

relative to umax� . In addition, this also implies that jgA0
umax� is the dominant term on the left side of the design constraint in

Equation S11 above, and the error incurred is a phase error.

d Case 2: K � 1. When K � 1, then g2
A0
[4bAgM, and hence the poles are real. The largest one has a magnitude of approxi-

mately

ffiffiffiffiffiffiffiffiffi
bAgM

p
K � K

ffiffiffiffiffiffiffiffiffiffiffiffi
bAgM

p
. The smallest one has a magnitude of approximately K

ffiffiffiffiffiffiffiffiffiffiffiffi
bAgM

p
(see Derivation 2 below for derivation

of the poles). Since K � 1, we can approximate
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1
K4 +

4
N2

q
with 1

K2 +
2K2

N2 . Thus, umax�z
ffiffiffiffiffiffiffiffiffiffiffiffi
bAgM

p
K=N. Hence, umax� is a factor of N

smaller than the smallest pole. Evenmore stringent than case 1. Again, themagnitude of both poles is large relative to umax� . As

in Case 1, jgA0
umax� is the dominant term on the left side of the design constraint in Equation S11 above.

d Case 3: K[1. We will start with the specific case of K = 10, N = 10. Plugging these values in Equation S14 yields umax�zffiffiffiffiffiffiffiffiffiffiffiffi
bAgM

p
=3:2. In this case, the poles are complex, with a real part whose magnitude is equal to

ffiffiffiffiffiffiffiffiffiffiffiffi
bAgM

p
=20. Therefore, umax� is

about 6 times larger than the real part of the poles. However, the imaginary part of the poles have a magnitude of z
ffiffiffiffiffiffiffiffiffiffiffiffi
bAgM

p
and are therefore larger than umax� (about 3 times faster). In this case the dominant approximation error is �u2

max, an amplitude

error. Finally, for K R N, the gA0
jumax� term in Equation S11 above is negligible, yielding the general expression

umax�z
ffiffiffiffiffiffiffiffiffiffiffiffi
bAgM

p
=

ffiffiffiffi
N

p
and the same analysis applies.

We confirmed these insights using simulations for all three cases (case 1: K = 1, N = 10, case 2: K = 0.1,N = 10, and case 3: K = 10,

N = 10). For all cases the output of the derivative motif A(t) tracks �dXCðtÞ=dt very well for inputs whose frequency content is under

umax� (Figure S4, time-domain plots), and accurate tracking is lost above it. Note that these are all deterministic solutions. However if

one is considering noise within the system, then positioning the design along the scenario of case 1 will be the best since its transfer

function H(ju) will amplify the least amount of noise above umax� (Figure S4, frequency domain plots). Case 2 will be the worst while

case 3 will be somewhere in between due to its sharp peak.

In a nutshell, these results indicate that either the real part of the poles need to be faster than umax� , and/or the complex part needs

to be faster than umax� for accurate derivative tracking at N = 10.

Derivation 1

Consider a first order Taylor series expansion of
ffiffiffiffiffiffiffiffiffiffiffi
C+ x

p
where C R 1 and x � 1. Here

ffiffiffiffiffiffiffiffiffiffiffi
C+ x

p
z

ffiffiffiffi
C

p
+ x

2
ffiffiffi
C

p . When C= 1
K4R1 and x =

4
N2 � 1, then have

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1
K4 +

4
N2

q
z 1

K2 +
2K2

N2 . This is satisfied when K % 1. For this paper 4
N2 � 1 since N will always be 10 or greater.

Derivation 2

For approximating the poles in case 2 (K � 1), we can apply the same Taylor series approach fromDerivation 1. FromEquations S10

and S15, the

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2
A0

�4bAgM

p
2 =

ffiffiffiffiffiffiffiffiffi
bAgM

p
2K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4K2

p
term can be approximated as

ffiffiffiffiffiffiffiffiffi
bAgM

p
2K ½1�2K2� where C = 1 and x = �4K2. Therefore

Equation S15 can be approximated as

s = �
ffiffiffiffiffiffiffiffiffiffiffi
bAgM

p
2K

±

ffiffiffiffiffiffiffiffiffiffiffi
bAgM

p
2K



1� 2K2

�
(Equation S16)

where one can see the the largest pole is �
ffiffiffiffiffiffiffiffiffi
bAgM

p
K +K

ffiffiffiffiffiffiffiffiffiffiffiffi
bAgM

p
and the smallest pole is � K

ffiffiffiffiffiffiffiffiffiffiffiffi
bAgM

p
.

An Alternative Derivative Motif
We present an alternative derivative motif that allows for an approximate computation of m dy

dt � q dXC

dt . We use a proportional-like input

function, ðqXCÞ=ðmY + qXCÞ, whose time-derivative will be measured by the motif to get

dA

dt
= bAM� 4Y0

q
gA

qXC

mY + qXC

A

KA +A
� gA0

A (Equation S17a)

dM

dt
= bMY0 � gMA

M

KM +M
(Equation S17b)

where Y0 is a constant (Y0 = 300 nM for simulations). When the active degradation is occurring at saturation and the design constraint

bAgM[
��s2max +gA0

smax

�� holds (see STAR Methods ‘‘Realizing the derivative control term’’), the system in the Laplace domain sim-

plifies to

AðsÞz �
4Y0

q
gAs

qXC

mY + qXC

bAgM

+
bMY0

gM

(Equation S18)
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whose time domain expression becomes

AðtÞz �
4Y0

q
gA

d

�
qXCðtÞ

mYðtÞ+ qXCðtÞ
�

dt

bAgM

+
bMY0

gM

(Equation S19)

An altered X1 equation must be used where now DtðXC;YÞ = ðbDY =Y0ÞA, i.e.
dX1

dt
= bIZ1 + fPðXC;YÞ+ bDY

Y0

A� g1X1 (Equation S20)

This alternative D motif is discussed in Section ‘‘PID benefits depend on the process to be controlled and PID gains need to be

tuned’’ showing it provides better set-point tracking dynamics upon step-changes in the input Y. In STARMethods ‘‘Linearized anal-

ysis of the alternative derivative motif’’, we linearize Equation S19 to show how it provides an approximate m
dy
dt � q dXC

dt .

Experimentally, the realization of this new input to the derivative motif can be achieved using the same basic approach we propose

to realize fP(XC,Y) in STAR Methods ‘‘Experimental realization of proportional control function’’.

The Control Circuit Equations Linearized about a Set-Point
Our goal here is to linearize the biochemical PID controller and process to relate it to the textbook linear PID case discussed in Section

‘‘Linear perturbation analysis of nonlinear PID control design provides analytical support for the design’’. We will derive the Laplace-

domain transfer function between my and qxc for our linearized PID biochemical controller.

As a means of evaluating perturbations about a set-point, we linearized Equations 6, 7, and 8 and the simplified derivative motif

equation Equation 16 around some steady state Yss;XCss
;X1ss ;Z1ss ;Z2ss ;Ass. The steady-state values are computed as:

0 = mYss � hZ1ssZ2ss (Equation S21a)

0 = qXCss � hZ1ssZ2ss (Equation S21b)

0 = bIZ1ss + bPYss

aPYss

aPYss +XCss

+ bDAss � g1X1ss (Equation S21c)

0 = bMYss � gMAss (Equation S21d)

The linearized time-dependent perturbed system is

dz1
dt

=my � hZ2ss z1 � hZ1ss z2 (Equation S22a)

dz2
dt

= qxC � hZ2ss z1 � hZ1ss z2 (Equation S22b)

dx1
dt

= bIz1 + bP

"
2aPYss

aPYss +XCss

�
�

aPYss

aPYss +XCss

�2
#
y � bPYss

aPYss

ðaPYss +XCss Þ2
xC + bDa

�g1x1

(Equation S22c)

a= � gA

bAgM

dxC
dt

+
bM

gM

y (Equation S22d)

The equations were derived by computing the Jacobian matrix of the nonlinear system and evaluating at steady state (Strogatz,

2014). The approximate solution is locally equal to the steady-state solution plus the perturbed solution, for example, the time-depen-

dent solution for X1 would be X1ðtÞ = X1ss + x1ðtÞ. Likewise, the input Y would be YðtÞ = Yss + yðtÞ. Transforming this set of linear

equations into the Laplace domain, we obtain

sz1ðsÞ=myðsÞ � hZ2ss z1ðsÞ � hZ1ss z2ðsÞ (Equation S23a)

sz2ðsÞ= qxCðsÞ � hZ2ss z1ðsÞ � hZ1ss z2ðsÞ (Equation S23b)
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sx1ðsÞ= bIz1ðsÞ+ bP

"
2aPYss

aPYss +XCss

�
�

aPYss

aPYss +XCss

�2
#
yðsÞ

�bPYss

aPYss

ðaPYss +XCss Þ2
xCðsÞ+ bDaðsÞ � g1x1ðsÞ

(Equation S23c)

aðsÞ= � gA

bAgM

sxCðsÞ+ bM

gM

yðsÞ (Equation S23d)

To facilitate notation, we designate kPq = bPYss

q
aPYss

ðaPYss +XCss Þ2
q = bP

aPq

ðaPÞ2
ðaP +m=qÞ2 q. When aPzm=q, the proportional function provides both

sensitivity and dynamic range in both directions of XC (see Section ‘‘Design of a proportional control term’’ for discussion). Likewise,

when aPzm=q, kPq = bP
4m q. For the rest of the derivation we assume aPzm=q. We also designate kDq= bD

gA

bAgM
(see Section ‘‘Design of a

derivative control term’’). Substituting these constants and the relationship for a(s) in Equation S23D into Equation S23C the equation

becomes

sx1ðsÞ = bIz1ðsÞ+
�
3kP +

qbAbM

gAm
kD

�
myðsÞ � ½kP + skD�qxCðsÞ � g1x1ðsÞ (Equation S24)

Let f(s) be the transfer function of the linearized process to be controlled by x1(s). Thus, xCðsÞ = fðsÞx1ðsÞ. Using this relationship into

Equation S24, we obtain after rearrangement

s+g1

fðsÞ xCðsÞ = bIz1ðsÞ+
�
3kP +

qbAbM

gAm
kD

�
myðsÞ � ½kP + skD�qxCðsÞ (Equation S25)

We then use Equations S23A and S23B to derive an expression of z1(s) in terms of xC(s) and y(s), and use this expression in the

equation above to generate:

s+g1

fðsÞ xCðsÞ = bIðs+ hZ1ss ÞmyðsÞ � bIhZ1ssqxCðsÞ
s2 + ðhZ1ss + hZ2ss Þs

+

�
3kP +

qbAbM

gAm
kD

�
myðsÞ � ½kP + skD�qxCðsÞ (Equation S26)

LettingFðsÞ = fðsÞ
s+g1

, we can rearrange Equation S26 to obtain the Laplace-domain relationship between xC(s) and y(s) of Equation 19

given by:

xCðsÞ =

�
bI

s+ hZ1ss

s+ hZ1ss + hZ2ss

+ 3skP +
qbAbM

gAm
skD

�
FðsÞ

s+ q

�
bI

hZ1ss

s+ hZ1ss + hZ2ss

+ skP + s2kD

�
FðsÞ

myðsÞ (Equation S27)

At steady state, i.e. s = 0, it is easy to see that myðs = 0Þ = qxCðs = 0Þ, consistent with the full nonlinear system. While kD and kP
are constants that are dependent on parameters, the integral gain terms in the numerator and denominator of Equation S27 are

a function of the Laplace-domain variable s. However, if the upper-bound of the frequency content of xC(s), i.e. umax is known,

where smax = jumax, then the parameter h of the antithetic integral controller can be designed such that jsmaxj = jjumaxj � hZ1ss .

Themathematical definition forumax is the same one used in STARMethods ‘‘Realizing the derivative control term’’. In the casewhere

jsmaxj = jjumaxj � hZ1ss , the integral terms in the numerator and denominator can be approximated as kI =
bIZ1ss

Z1ss +Z2ss
. This approxima-

tion conforms the numerator and denominator terms that are associated with integral control to the traditional PID expression.

Making this approximation in Equation 19 and letting the integral control weight kI =
bIZ1ss

Z1ss +Z2ss
yields Equation 20 in the main text.

For the processes we use in this paper, the highest calculated umax was approximately 0:25 rad min�1. For our lowest input values

Y = 60 nM, hZ1ssz2:5 rad min�1, about an order of magnitude larger than umax. Thus, even for this worst case, jsmaxj =
jjumaxj � hZ1ss . For Y = 300 nM, hZ1ssz12 rad min�1. In general for larger Y, hZ1ss scales approximately with Y.

While the analyses above derive linearization and proportional gains for the final form of the proportional control, similar treatment

can be extended to the other proportional control functions that are analyzed and compared. For the proportional control function

bP
ðmKC=qÞ

ðmKC=qÞ+XC
, we get kPq = bP

ðmKC=qÞ
ððmKC=qÞ+XCss Þ2

= bP
ðmKC=qÞ

ððmKC=qÞ+mYss=qÞ2. And for the proportional control function bP
aPY

aPY +XC
, we get kPq=

bP
aPYss

ðaPYss +XCss Þ2
= bP

aPqYss

ðaPÞ2
ðaP +m=qÞ2 q which becomes kPq=

bP
4aPqYss

q for aPzm=q.

Finally, to assess the accuracy of the linearization for the parameter values used, we simulated the linearized system and compared

it to the full nonlinear system (Figures 4 and S7). In addition, we also simulated a traditional PID controller where we coupled the pro-

cess equation, Equation 5, with an X1 equation that uses the traditional error terms

dx1
dt

= kI

Z t

0

½myðt0 Þ � qxCðt0 Þ �dt0 + kP½my � qxC�+ kD

�
m
dy

dt
� q

dxC
dt

�
� g1x1 (Equation S28)
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The dy
dt term cannot be infinite for ODE solvers, so we simulate the step function with a finite transition time of about 2 min, still much

faster than the time-scales of rest of the system which is all that matters. We can decrease the transition time further without any

effect in the solution. Equation S28 can be used to compare the linearized biochemical controller to the traditional one, especially

scrutinizing the approximation made for kI. Specifically, the transfer function for the traditional PID controller using Equation S28

for a step change DbC in bC is:

xCðsÞ =
sDbCX1ss

s+gC

s+ q

�
bI

hZ1ss

hZ1ss + hZ2ss

+ skP + s2kD

�
FðsÞ

(Equation S29)

That of the biochemical controller is:

xCðsÞ =
sDbCX1ss

s+gC

s+ q

�
bI

hZ1ss

s+ hZ1ss + hZ2ss

+ skP + s2kD

�
FðsÞ

(Equation S30)

Comparing both, once can see that the integral control gains become more similar to each other as hZ1ss increases, which occurs

when Y increases. For our examples in this paper, Yss = 600 nM is a large enough value (Figure S7C) such that the linearized biochem-

ical PID and the traditional linear PID have a very similar response and hence the linearized biochemical PID is exhibiting a constant kI
in this regime.

For the system simulated to generate Figures 4A and S7A, the traditional linear PID agree well with the linearized biochemical PID.

For the case of the process with delay only (Section ‘‘PID benefits depend on the process to be controlled and PID gains need to be

tuned’’), we simulated the linearized version and the traditional linear controller for case 1 from Figure 5A. The full system and the

linearized version agree well while the traditional linear controller has a much slower convergence rate (Figure S7D). Given that there

is no derivative term in this case, the only source for the differences is the 3kPy (linearized version) versus kPy (traditional). We simu-

lated the linearized biochemical controller but dividing the 3kPy by 3, which resulted in identical results for the traditional and

biochemical controller (Figure S7D, linearized (kPy)). Interestingly the 3kPy term in the biochemical controller helps accelerate conver-

gence relative to the traditional case.

Linearized Analysis of the Alternative Derivative Motif
Here we determine the approximate transfer function for the PID controller when the alternative D motif (STAR Methods ‘‘An alter-

native derivative motif’’) is used. Linearizing Equations S19 and S20 yields

aðtÞz �

4Y0

q
gA

"
mYss

ðmYss + qXCss Þ2
q
dxC
dt

� qXCss

ðmYss + qXCss Þ2
m
dy

dt

#

bAgM

(Equation S31)

and

dx1
dt

= bIz1 + 3
bP

4m
my � bP

4m
qxC +

bDAss

Y0

y +
bDYss

Y0

a� g1x1

= bIz1 + 3
bP

4m
my � bP

4m
qxC +

bDbM

gM

y +
bDgA

mqbAgA

�
m
dy

dt
� q

dxC
dt

�
� g1x1

(Equation S32)

We then set kD =
bDgA

mqbAgA

and following the same procedure as we did above for deriving the transfer function for the biochemical

PID with the original D motif (Equation 20), we get

xCðsÞz

�
kI + 3skP +

bDbM

mgM

s+ s2kD

�
FðsÞ

s+ q½kI + skP + s2kD�FðsÞ myðsÞ (Equation S33)

It has the same basic form as Equation 20, but with the addition of a kDs
2 term in the numerator. As discussed in Section ‘‘PID

benefits depend on the process to be controlled and PID gains need to be tuned’’, this extra term can improve set-point tracking

dynamics due to step-changes in my.

Linearized Analysis of the integral Controller from Equation 25
We can carry the same linearization analyses as above to Equation 25, assuming that degradation occurs at saturation (KZ � Z). This

yields
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dz

dt
zbZ

"
2aPYss

aPYss +XCss

�
�

aPYss

aPYss +XCss

�2
#
y � bZYss

aPYss

ðaPYss +XCss Þ2
xC � gZy (Equation S34)

whose Laplace-domain equation when aP = m/q and gZ = bZ/2 and qXCss
=mYss is

szðsÞz3
bZ

4m
my � bZ

4m
qxC � bZ

2m
my

z
bZ

4m
½my � qxC�

(Equation S35)

We can then take Equation S25 which relates the xC(s) to y(s) for the antithetic PID and replace the antithetic integral control term

bIz1(s) with the new integral control term b�I zðsÞ to get

s+g1

fðsÞ xCðsÞ= b�
I zðsÞ+

�
3kP +

qbAbM

gAm
kD

�
myðsÞ � ½kP + skD�qxCðsÞ

=

�
b�
I

bZ

s4m
+ 3kP +

qbAbM

gAm
kD

�
myðsÞ �

h
b�
I

bZ

s4m
+ kP + skD

i
qxCðsÞ

(Equation S36)

where we set kI = b�I
bZ
4m to get the transfer function

xCðsÞ =

�
kI + 3skP +

qbAbM

gAm
skD

�
FðsÞ

s+ q½kI + skP + s2kD�FðsÞ myðsÞ (Equation S37)

Which has exactly the same form as the transfer function for the antithetic system, Equation 20. The only difference being kI = b�I
bZ
4m for

the new PID while kI =
bIZ1ss

ðZ1ss +Z2ss Þ for the antithetic PID, a function of the steady-state Z1 and Z2 values. When simulating the new PID in

Section ‘‘Constructing a PID controller with a different integral controller architecture’’ for Figures 7A and 7B, we enforce that kI =

0:058 = b�I
bZ
4m, where we set b�I = 0:058 4m

bZ
to obtain approximately the same kI value for both strategies for fair comparison.

Applicability of Antithetic PID Controller to Arbitrary Processes
For the antithetic PID controller to be able to control a given process, it must be tuned so that it provides both zero stead-state

tracking error, i.e. mY = qXCss
, and stability. In the original work on the antithetic integral controller (Briat et al., 2016), the authors

find that for zero steady-state tracking error over all values of the set-point Y, the integral controller variable Z1 must positively regu-

late XC. With the addition of P andD terms, we show that Z1 still positively regulates XC (see STARMethods ‘‘Z1 positively regulates XC

in the presence of P and D terms’’ for proof). Therefore any process that exhibits this property, however complicated, will yield zero

steady-state error, as long as the integral controller is working. For the antithetic integral controller to work, Z1 and Z2 must reach

steady state and be non-zero. In STAR Methods ‘‘Bounds on antithetic integral control with P and D terms’’, we discuss the condi-

tions for this to hold. However, zero steady-state error does not imply that the system is stable, the second requirement for the PID to

control a given process. A general stability analysis for a full nonlinear system is difficult. However, through the linearized analysis for a

given PID controller and process, standard techniques can be used to check whether the system is locally stable.

Z1 Positively Regulates XC in the Presence of P and D Terms
Given that X1 positively regulates XC, we will show that even in the presence of P and D control terms, Z1 positively regulates XC. To

begin, we assume that for the open loop process, the steady-state XC is a monotonically increasing and non-saturating function of

steady-state X1. What this implies is that dXC

dX1
>0. We denote the steady-state relationship of XC and X1 as XC(X1). For the simple pro-

cess used as an example in this paper, when dXC

dt = bCX1 � gCXC, then XCðX1Þ = bC
gC
X1. Note here that in order tominimize cumbersome

notation, we will just use X1 to denote the steady state of X1 and so on. For the closed-loop system with P and D control terms, the

steady-state for X1 can by computed by setting dX1

dt = 0 in Equation 8 in the main text, resulting in the steady-state X1 equation:

bIZ1 + bPY
mY

mY + qXC

+ bD

bM

gM

Y =g1X1 (Equation S38)

Therefore, X1 is a function of Y and Z1 (explicitly, and also through XC(X1)). We will therefore, denote it by X1(Z1,Y). If we set bP = 0

(I and ID cases, no proportional control), then for a given Y, X1 is a monotonically increasing function of Z1, and since dXC

dX1
> 0 then XC is

also an increasing function of Z1. Thus, Z1 positively regulates XC, given Y.

Now, if we set bP > 0 (PI and PID cases), then we need to prove that X1(Z1,Y) is a monotonically increasing function of Z1, given Y

(implying as above that XCðX1ðZ1;YÞÞ is a monotonically increasing function of Z1 for a given Y). To begin we will differentiate

Equation S38 with respect to Z1 to get
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bI �
dX1

dZ1

dXC

dX1

bPY
mY

ðmY + qXCÞ2
=g1

dX1

dZ1

(Equation S39)

which we can rearrange and solve for dX1=dZ1 to get

dX1

dZ1

=
bI

dXC

dX1

bPY
mY

ðmY + qXCÞ2
+g1

(Equation S40)

Where it is easy to see that dX1=dZ1>0, thus proving that X1ðZ1;YÞ is a monotonically increasing function of Z1, given Y.

For this to hold, we must now also prove that solution of X1 is unique for a given Z1 and Y. This can be seen by looking at

Equation S38 above. For a given Z1 and Y, the left side is a monotonically decreasing function of X1 (through XC(X1)) beginning at

bIZ1 + bPY + bD
bM
gM

Y and asymptotically decreasing to bIZ1 + bD
bM
gM

Y. The right side, g1X1, will always cross this curve at a unique value

(Figure S8A). Thus, X1(Z1,Y) is a unique monotonically increasing function of Z1. And as above it follows that XC(X1(Z1,Y)) is a mono-

tonically increasing function of Z1, given Y. Thus, Z1 positively regulates XC, given Y.

Bounds on Antithetic Integral Control with P and D Terms
The steady-state X1 equation is

bIZ1 + bPY
mY

mY + qXC

+ bD

bm

gM

Y =g1X1

=
g1

G
XC

(Equation S41)

WhereG is the steady-state gain between X1 and XC through the process, i.e. XC =GX1, a linear relationship for this exercise. For the

antithetic integral controller to work, Z1 and Z2 must be non-zero and reach steady state. When this holds, in the presence of P and D

terms, we get the following relationship

bIZ1 +
bP

2
Y + bD

bm

gM

Y =
g1m

Gq
Y (Equation S42)

The important point is that as one increases bP and bD, the P and D gains, Z1 decreases. The integral controller breaks when Z1 = 0,

after which this relation no longer holds and Z2 grows over time, as we show in Figures S1C–S1E. Equation S42 implies that as long as

bP

2
+ bD

bm

gM

<
g1m

Gq
(Equation S43)

the integral controller is working and there will be zero steady-state error. However, this does not mean that the system is stable, the

second requirement for the PID to control the process.

The examples in Figures S1C–S1E satisfy Equation S43 for t% 0 where bP and bD are zero. At t = 0, the parameters are changed so

that Equation S43 does not hold. Here integral control is broken where we observe in Figures S1C–S1E that dZ1

dt /0 and Z1/ 0 but
dZ2

dt = r, where r is observed to be a positive constant. For these cases, since dZ1

dt /0, Equation 6 becomes mY = hZ1Z2. Substituting

this result into Equation 7 yields

dZ2

dt
= qXC � mY

= r

(Equation S44)

Note that XC reaches a steady-state value, uncoupled from the integral control, and thus r must be a constant given that Y is a

constant. Thus, qXC =mY + r and Z2 = mY=Z1, where Z1/0 as t/N.

For the PI numerical example in Figure S1C, wemeasured dZ2=dt = r = qXC � mY to be rz91 nM/min. For the ID numerical example

in Figure S1D, we measured rz75 nM/min. And for the PID numerical example in Figure S1E, wemeasured rz85 nM/min. For these

cases, we also numerically solved for XC in Equation S41 above when integral control is broken (Z1/0). This enabled us to calculate r

which was in excellent agreement with the simulation results. In the numerical examples we also observed that mY = hZ1Z2, as pre-

dicted by the theory. Although as Z1/0 with increasing time, we observe increasing numerical roundoff error in the hZ1Z2 term as

one would expect.

We also examined the parameter search results in Figure S5B to look at the boundary at which the system loses perfect adaptation

(edge of blue and white regions). In other words, the boundary is where Equation S43 becomes violated as one moves into the white

region. For this example,G = 1.5. For the PI case when we solve Equation S43 for bP at this critical value we get bP = 0.44. And for the

ID case we get bD = 0.79. This agrees well with the plots in Figure S5B. One can see that the boundaries are independent (within the

tolerance of the parameter sampling) of bI as predicted by the theory.
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Steady-State Analysis of Integral Controller from Equation 25
For the integral controller presented in Section ‘‘Constructing a PID controller with a different integral controller architecture’’, we go

through the general proof for a unique solution to Equation 25 at steady state. We will also discuss requirements for an operational

integral controller. To begin, we assume that for the open loop process, the steady-state XC is a monotonically increasing and non-

saturating function of steady-state X1. What this implies is that dXC

dX1
>0. We denote the steady-state relationship of XC and X1 as XC(X1).

For example, for the simple process used as an example in this paper, when dXC

dt = bCX1 � gCXC, then XCðX1Þ = bC
gC
X1. Note here that in

order to minimize cumbersome notation, we will just use X1 to denote the steady state of X1 and so on. For the closed-loop system

with P and D control terms, the steady state for X1 can by computed by setting dX1

dt = 0 in Equation 28 in the main text, resulting in the

steady-state X1 equation:

b�
I Z + bPY

mY

mY + qXC

+ bD

bM

gM

Y =g1X1 (Equation S45)

Therefore, X1 is a function of Y and Z (explicitly, and also through XCðX1Þ). We will therefore, denote it by X1ðZ;YÞ. At the same time,

Equation 25 generates the relationship between Z and XC at steady state:

bZ

gZ

mY

mY + qXCðX1ðZ;YÞÞ =
Z

Z +KZ

(Equation S46)

The steady state for Z is the intersection of the function Z
Z +KZ

and bZ
gZ

mY
mY + qXCðX1ðZ;YÞÞ as they are plotted as a function of Z. The function

Z
Z +KZ

is an increasing function of Z, starting at zero for Z = 0 and asymptotically reaching one as Z/N. As a result, if we can prove that

the other function is a decreasing function of Z, for a given Y, then the system is guaranteed to have a unique positive solution (see

examples in Figure S8B when this is the case). In STAR Methods ‘‘Z1 positively regulates XC in the presence of P and D terms’’ we

show that XC is an increasing function of Z1 for the antithetic controller, given Y. And since the steady-state X1 equations for the two

integral controllers have the same form (compare Equations S38 and S45), it follows that XC is an increasing function of Z given Y for

the integral controller presented in Section ‘‘Constructing a PID controller with a different integral controller architecture’’. Thus,
bZ
gZ

mY
mY + qXCðX1ðZ;YÞÞ is a decreasing function of Z given Y. This demonstrates the existence of a unique steady state solution for the

PID controller developed from the integral controller presented in Section ‘‘Constructing a PID controller with a different integral

controller architecture’’. However, we are not guaranteeing that is stable, which depends on the gain in the process. When unstable,

it can result in limit cycles as we show in Figure 7 for the I only case.

The proof above applies for any value of bZ/gZ. However, we now put forward the requirement that bZ=gZ>1, and argue that this is a

design choice for the integral controller to function appropriately (I only case where XCðX1ð0;YÞÞ = 0). This can also be gleaned from

Figure S8B (I only case), where it can be seen that it is only when bZ=gZ>1 and Z[KZ that a steady-state solution can occur where
Z

Z +KZ
z1. This is a condition to achieve the integral action. Figure S8B shows that for bZ=gZ<1, the solution has to occur at Z

Z +KZ
< bZ=

gZ<1. Thus, for this case, approximate integral control will becomemore degraded the smaller that bZ=gZ becomes. As designers, we

are in control of enforcing bZ=gZ>1 andZ[KZ for the operation regimes of interest. Amore stringent requirement of bZ
gZ

mY
mY + qXCðX1ð0;YÞÞ>

1 is required for a functional integral controller if P and/or D control is present, where XCðX1ð0;YÞÞ>0.

DATA AND CODE AVAILABILITY

The code used for all simulations is available at https://github.com/mgschiavon/bioPIDcontrol.
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